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Chaos-induced modulation of reliability boosts output firing rate in downstream cortical areas
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The reproducibility of neural spike train responses to an identical stimulus across different presentations
(trials) has been studied extensively. Reliability, the degree of reproducibility of spike trains, was found to
depend in part on the amplitude and frequency content of the stinpdiludunter and J. Milton, J. Neuro-
physiol. 90, 387(2003]. The responses across different trials can sometimes be interpreted as the response of
an ensemble of similar neurons to a single stimulus presentation. How does the reliability of the activity of
neural ensembles affect information transmission between different cortical areas? We studied a model neural
system consisting of two ensembles of neurons with Hodgkin-Huxley-type channels. The first ensemble was
driven by an injected sinusoidal current that oscillated in the gamma-frequency (#h¢tz) and its output
spike trains in turn drove the second ensemble by fast excitatory synaptic potentials with short term depression.
We determined the relationship between the reliability of the first ensemble and the response of the second
ensemble. In our paradigm the neurons in the first ensemble were initially in a chaotic state with unreliable and
imprecise spike trains. The neurons became entrained to the oscillation and responded reliably when the
stimulus power was increased by less than 10%. The firing rate of the first ensemble increased by 30%,
whereas that of the second ensemble could increase by an order of magnitude. We also determined the response
of the second ensemble when its input spike trains, which had non-Poisson statistics, were replaced by an
equivalent ensemble of Poisson spike trains. The resulting output spike trains were significantly different from
the original response, as assessed by the metric introduced by Victor and Hurpgueairophysiol76, 1310
(1996]. These results are a proof of principle that weak temporal modulations in the power of gamma-
frequency oscillations in a given cortical area can strongly affect firing rate responses downstream by way of
reliability in spite of rather modest changes in firing rate in the originating area.
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I. INTRODUCTION neuromodulatorg§see Ref.[23] and references therginin
macaque monkeys attention modulated the degree of coher-
The reproducibility of neural spike train responses to arence in the gamma-frequency range between neurons in cor-
identical stimulus across different trials has recently beertical area V4 and the local field potentidlFP) [24,25. The
studied using a large number of different experimental prepareliability of neurons injected by oscillating currents has
rations and stimulus ensemblgk-9]. When the neuron is been studied experimentalfft2—15,17,26 For small driv-
driven by a fluctuating stimulus the spike trains are oftening amplitudescompared with the intrinsic noise leyehe
similar across trials, leading to peaks of elevated firingdischarge was unreliable, whereas for large amplitudes it was
frequency—events—in the spike time histogrgt0—17. A reliable across a large frequency range. However, for inter-
variety of measures have been used to quantify the degree ofediate amplitudes, reliability depended on driving fre-
reproducibility of spike trains[4,11,13,17,18 There are quency: it was enhanced when neurons were phase locked
three different aspects of reproducibility, two of which can[17]. These results predict that reliability vivo can be
be quantified using only the spike time histogram. Téle modulated by the presence of synchronous oscillations. The
ability of an event is the fraction of trials during which a question then is, what would be the downstream effect of
spike is obtained during an event, thecisionis the inverse these reliability modulations?
of the jitter in spike times during an evefitl]. The third We consider the information transmission between two
measure derives from non-Poisson statistics due to spike panodel cortical areas, each represented by an ensemble of
terns in trains of neural dischar@#8,19. The attractor re-  neurons(Fig. 1). Our goal is to determine the following1)
liability is a measure of the robustness of these patterns artbe relationship between the reliability of the first ensemble
cannot be determined using only the spike time histogramand the firing rate of the second ensemble; &)dto what
Indeed, it quantifies the deviation of the spike train statisticeextent(non-Poissonspike patterns in the output spike trains
from Poisson statisticEl8]. The responses across different of the first ensemble affect the response of the second en-
trials can sometimes be interpreted as the response of aemble. The model neurons had Hodgkin-Huxley-type
ensemble of similar neurons to one stimulus presentatiomoltage-gated channels and were connected by fast excitatory
[20]. Reliability then corresponds to the degree of synchronysynapses with short term depressi&TD, see the Methodls
between different neurons. The first ensemble was driven by an injected current that
Localized synchronous oscillations in the gamma-oscillated in the gamma-frequency range and its output spike
frequency rang€30—80 Hz have been observed using hu- trains in turn drove the second ensemble. The oscillating
man electroencephalographic recordings under various beurrent represented the inputs of neurons that were synchro-
havioral conditions[21,22 and may be under control of nized in the gamma-frequency range. Their activity corre-
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Each neuron in the second ensemble received inputs from
E ble 2 :
O O O O O nsemble N¢on=100 neurons from the first ensembirepresents the

number of similar neurons receiving approximately the same
inputs, whereadN.,, is the number of these neurons that
project to one given downstream neuron. The appropriate-
ness of our choice dfl andN,, values in relation to data on

O O Ensemble 1 cortical circuits will be discussed in the Discussion. The
neurons were connected bya-amino-3-hydroxy-5-
“N\_JS \_" Driving current methyl-4-isooxazolepropionic acitAMPA) synapseq29].

The unitary strength of synaptic inputs is history dependent
FIG. 1. Diagram of the network geometry. The first ensembleon multiple time scaled30]. STD reduces the synaptic
consisted ofN=500 neurons, each driven by a sinusoidal current.strength when the presynaptic neuron produces spikes at a
The second ensemble also consistedNef 500 neurons. Each of high rate. A number of computational roles have been pro-
them received AMPAergic synaptic inputs from a different set of posed for STD: it can remove redundancy in spike tré&i3
Ncon= 100 neurons chosen randomly from the first ensemble. They,q provide cortical gain contrdl32]. Here we use the
neurons in ensembles 1 and 2 were not connected among therfso el for STD that is given in Ref32). Each spike from a
selves. There were also no feedback connections from ensemblen?euron in the first ensemble led to a current pulse
to ensemble 1. sgd(t)e (V—Eawpa) in the postsynaptic neuron. Here
o _ 7=3 ms[29] was the synaptic decay constad(t) was the
Sponds_ to what V\{OUld be measure.d as oscillations |.n thGepression Variab'ﬁg:gmaX/Ncon was the unitary conduc-
local field potential [24]. In experiments on behaving tance,t was the time since the arrival of the presynaptic
macaque monkeys, the power in the gamma-frequency ranggike, ande \ypa=0 MV is the reversal potential. The maxi-
of the LFP displayed transient increa$24,25. In our simu-  myum synaptic conductance wgs.,= 0.1 mS/cn for simu-
lations these were modeled as increases in the amplitude @ftions with STD andy,,,=0.03 mS/crA for those without
the oscillatory current. Our results are as follows: A small,sTp. Each time a presynaptic neuron firddyas reduced by
transient increase in gamma power led to a modest increagefactor 0.75after the spike was transmitted. Between two
in the firing rate of the first ensemble together with an in-presynaptic spiked(t) approached unity exponentially with
creased reliability and precision. However, the firing rate ofy time constant equal to 300 rf32].

the second ensemble increased even more. The spike trainsThe standard set of parameters was, for the first ensemble,
of the first ensemble had non-Poisson statistics because p(])‘: 0.0,uA/cmz, D=0.004 mV/mg, andIA=2.O8,uA/cm2

the presence of spike patterns. When the input spike trains t(&haotic stateor | ,=2.30 uAlcm? (phase-locked stateFor
the second ensemble were replaced by an equivalent inpyla second ensembli,= — 0.3 wAlcm?, D =0.04 m\2/ms
with Poisson statistics, the strong increase in firing rate of the 4, A=0. ’

second ensemble was still obtained, but the output spike
trains were significantly different. o )
B. Statistical analysis
General notationSpike times were calculated as the time
Il. METHODS that the membrane potentigV/ in Eg. (1)] crossed 0 mV
A. Neuron model from below. t,; is the ith spike time by thenth neuron,
likewise tp,; is the jth spike time by themth neuron. Since
. ~' _neurons within an ensemble are not couplég, could
ZSQO neurons(Fig. 1). Each neuron had a fast transient equivalently be considered as thi spike during thenth
sodium currenty,, & delayed rectifier potassium CUrréRt, iz N is the total number of neurons in the ensenblethe
and a leak current, and was injected by a time-varying oo nymber of trials Ny is the number of spikegby all
current, I(t) =lo+1,cos 2rfit, and a white noise current e rons or during all the triglsgenerated during a given
Cr7. The mean ofy was zero{#(t))=0, and the variance  gjmyJation run. For some calculations it is convenient to pool

was D, (n(t) 5(t"))=2D5(t—t"). Here(-) is the average e gpike times of all neurons together into one set,
over the noise ensemble ar@},=1 uF/cn? is the mem- {t, t

> g s b, ... ty), ordered from low to high values. The
brane capacitancénormalized by area The driving fre- S

quency wasf 4= 40 Hz. The equation for the membrane po- ordered set is indexed hy, wherev=1 is the earliest spike
tential V rea dds ' and v= N is the latest. Most of the statistical quantities de-

termined from the simulations were spike based; that is, for
dv each measurement, there is an associated spike tirmg
mgr =~ INa~ Tk~ Il D)+ Crp(D). (1) For instancey, could be an interspike interval argl could
be the first spike time of the interval. The specific choices for
y are given below. In some cases the simulation runs were
The model equations for the single neuron and implementadivided into three intervalgi) 0<t<750 ms, when the first
tion are exactly as described in REZ7] and are not repeated ensemble is in a chaotic statéj) 750 ms<t<<1500 ms,
here. The model used here was adapted from that introducedhen the first ensemble is phase locked, &iid 1500 ms
by Wang and BuzsaKi28|. <t<2250 ms, when the first ensemble has returned to a

The model consisted of two ensembles, each vith

C
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chaotic state. Averages of were determined for each of
these intervals, using all the, that had at, in the interval 12}
under consideration. Since thg are ordered, this is a con-
tiguous setyp<v=<v, (b stands for begin and stands for
end. N 11 }
U>
1 e 1 i
<y>=mFEyb Yo <t>:mV;bt”' 10}
2

We also determined the time-resolved average using a sliding 0.9 10 100 1000
window of lengthT ,, that was translated along the time axis N

with increments equal td .. The position of the sliding o
window was indicated by the indéx The resulting averages ~ FIG. 2. TheCy, of an asynchronous ensemble Wfnneurons
(y)¢ and (t), are over allv values with k—1)Tig=<t, converges to 1. For this example, each neuron produced a random

<(K=1)Tinert+ Tay - Tay andTi are expressed in terms of spike train with C\/w1.52.(circles), Ccv=1 (Poissgn spike train,

N,, and Ny using the relationsT ,, = Tma/Nay and Tine squarel and C\=0.707(diamonds$. The construction of the spike

=(UT TN, We usedn — 55 =75 andT trains is described in the text. Error bars are the standard deviation
max av Incr- av 1 incr 1 max

=2500 ms[the last 250 ms of the simulation were not in- across ten different realizations of the ensemble of spike trains.

cluded in interval(iii) in order to make its length equal to aggregate set of spike times and it is not sensitive to which

that of interval(ii)]. neuron produced a given spike. Hence, it can not be used to

Standard spike train statistic§he mean firing raté is  gjgtinguish, for instance, a Poisson process from a Gamma
defined as the number of spikes divided by the duration Obrocess with an order>1 [33].

the measurement interval. The mean firing rate is determined g o asynchronous ensemble each neuron fired indepen-
for each time interval (i)—(iii )]. The neuron was driven by genily at a constant rate. The spike time histogram is there-
an oscillatory current with periofi=1/f y=25 ms. Since the 516 approximately constant as a function of time. When
firing rate of the neuron was less than 40 Hz, there Wo_uld NOLach neuron produces a homogeneous Poisson spike train,
be more than one spike per cygtaenth cycle was the time  he Cv (coefficient of variation, or the standard deviation of
interval betweenr{—1)T andnT]. The jitter o~ is defined s the single neurondnterspike intervals divided by the mean
the standard deviation across trials of the spike times on g pe equal to one. The sum of independent Poisson pro-
given cycle, averaged across all cycles during the time interzegses is also a Poisson process. The coefficient of variation
vaIqu |nt§rest:k . isticsA binned , C\P, of the aggregate spike train is therefore also one. The

Inned spike train statisticsA binned representation o ce in theCl, value across different realizations of the
X“(t.) of the spike frain of thenth neuran IS obtained by ensemble only depends on the number of spikgsn the
setting Xq(t) equal to the number of spikes between aggregate spike train, not on the number of neufdms the
—At_/2 andt+At/2. Fpr the model neuron used here theensemble.(NumericalIy we found that foNg=10 spikes,
relative refractory period is larger than 2 ms. Hence, foGC_O 92+0.24 forN.=100 CP=0.99+0 10 and forN

V_ . . y S_ y V_ . — . ) S

small binwidthAt<2 ms, there cannot be more than one S
spike per bin TheS spike time histogram, STH =1000, C{,=1.00+0.03, errors were the standard deviation
_ (1OOCAt/N)X(tj is proportional to the sum of ovér all  across 1000 realizationdVhen the neuron produced random
’ n . . H B
neuronsX=3N_.X, (sinceAt is expressed in milliseconds, fsplke tralnsh thatl weretz::pc()jt.dpé)lssond and had CV'.S different
the factor 1000 assures that STH is in hgertz rom one, the value oCy did depend orN. We conjecture

Interspike-distance reliability and synchrony measures that for large enough e_nsemt_)lé§~1 in the asynchronous
The C\F/: measure is based on the idea that during reliapisState. We performed simulations to test this conjecture and

(synchronousstates the minimum distance between spikeletermined at whal value Cy approached unityFig. 2).

of different neurons is reduced compared with unreliable?@ndom spike trains with a CV of less than one were gener-
(asynchronousstates. The interspike interval of treom- atgd from Poisson spike trains by removing every other
bined set of ensemble spikes is,=t,,;—t,. Note that SPike. The expected value of the CV Was/i#0.707. and
these interspike intervals are betwedifferentneurons. The the mean interspike interval was 20 ms. Random spike trains

coefficient of variation is with a CV larger than one were generated using an interspike
interval distribution that was the sum of two exponential

(72> g >2 dist_ributions: distribution 1 had a mean of 1 ms and d?str_i—

C\P/: vy _s bution 2 had a mean of 10 ms. This type of bimodal distri-

(7)) bution is representative of a neuron firing doublets. For a

given spike train the even ISls came from distribution 1 and
HereP stands for population and ), is the average over all the odd ISIs from distribution 2. In that way we obtain a
intervals. The interval, can be identified with three times sequence consisting of a repeating motif of a long interval
t,, t,;1, and the meant(+t,,)/2. For the sliding-window  followed by a short interval. The actual spike times are given
averageCy(t), the latter was used{ depends only on the by the cumulative sum over all the ISIs. The CV of the

031912-3



P. H. E. TIESINGA PHYSICAL REVIEW E69, 031912 (2004

resulting spike train was=1.523. For each spike train, a mean firing rate$34] so that it could resolve fast temporal
transient of 100 ms was discarded and the remaining 150todulations in the degree of coincidence.

ms were used for analysis. For an ensembl&lef10 spike An estimate for the dispersion of the spike times in an
trains with CV values different from one, ti@&f was signifi-  event can be obtained from,,,;. For a given spike time,;
cantly different from 1, but, foN= 1000, the ensembles had we take the mean of thdl, lowest values ofA ;. This

C\{ values close to onéFig. 2). Based on these numerical value is averaged across #j| in the averaging time interval
results we expect that for sets of a few hundred spike traingf length T, to obtainA(t). WhenN, is somewhat smaller
with a constant rate and a CV different from one, tlﬁafor than the mean number of neurons firing on each cyk(e)

the asynchronous state will be close to unity. is proportional to the dispersion in the spike times.

For a perfectly synchronougeliable ensemble withN Spike metrics.The distance between spike trains was
neurons oscillating with period, the set{r,} consists of quantified using the metrics introduced by Victor and Pur-
Ng/N—1 intervals equal td andNg— Ng/N short intervals pura[35]. The metric based on the spike times v2i{q),
between spikes that are part of the same event. We evaluatg,q the one based on the interspike intervals B&s). The
Cy in the limit that the lengtf of these short intervals goes gistance between two spike trains was the minimum cost to
to zero. Hence, to first order i, transform one spike train into the other by moving or delet-
ing existing spike timeginterspike intervalsor adding spike
times (interspike intervals The cost of adding or deleting a
) spike (interval) was one and the cost wasto move a spike
with a=(Ns—1)/(Ns/N—1) and B=(Ns/N)(N=1)/(Ns  gyer 1 ms(increase or decrease an interval by 1 (Ref.
—1). For largeNg, CJ reduces to/N. Thus, CJ—1)/{N [68))).
is a measure for synchrony 'Fhat is rllorma”Zed petvveen Oand gy goal was to determine the statistics of the distance
1. SinceN is constant, we will us€y, without this normal-  petween the output spike train generated in response to a set
ization. CY; is sensitive to the precision of the ensemble dis-of attractor spike trains and the output spike train generated

Ch=\a[1-(a/T+T/a)BA],

charge as well as to the degree of coincidence. in response to surrogate spike trains. The spike trains pro-

The nearest-neighbor distance of spikefrom the spikes  duced by the neurons of the first ensemble did not satisfy
of neuronm is Poisson statistic§18], to indicate this we refer to them as
“attractor spike trains” or sometimes as “original spike

Amni:m_in“ni_tmjla trains.” Surrogate spike trains were obtained by randomly

) distributing spike times across the different neurons in the

o ) ) ) first ensemble. After this procedure short segments in the
the minimum is taken over all spike timég; of neuronm.  gpike train have Poisson statisticks,36. We implemented
There areN; different spikes and for each spike there areiis in maTLAB using two arrays: one containing the spike
N—1 different nearest-neighbor distances to the other netimes, and the other containing the index of the neuron that
rons in the ensemble. Hence, there adg=(N—1)Ns produced the spike. The elements of the array containing the
nearest-neighbor distances, referred to as pairs. Note thakyron index were then randomly permuted uSHYND-
each pair is counted twic@ ,,=Annj, because it is asso- perm Ten sets of attractor spike trains and ten sets of surro-
ciated witht,; as well as witht ;. The coincidence factot  gate spike trains were generated, and the conductance wave
is defined as the number df,,,;<P, divided by the maxi-  forms corresponding to each of these sets were injected into
mum number of coincidencds., hereP is a preset preci- the model neuron on 40 trials. This yielded 800 output spike
sion, typically equal to 2 ms. The number®f,,;<P cannot  trains. The spike trains were labeled by the input-spike-train-
exceedN,,, hence takingNo=N,=(N—1)Ns would yield a  set indices» andu and the trial indices andm. D ,;, ,, Was
number between 0 and (hote thatNs is now the total num-  the distance between the output spike trains labeledrby
ber of spikes in the interval under consideratiofowever,  and um, respectively.D,,, was the distance between the
when the minimum single-neuron interspike interval is Iargerspike trains generated in response tosetnd those gener-
thanP for all neurons, the number of coincidences in a pairated in response to setaveraged over all pairsn(m) of
of neurons fi,m) cannot be larger than the minimum of the trials n=1, . . . ,40belonging to set andm=1, . . . 40 be-
number of spikes produced by neuromsand m, formally  |onging to setu. For the diagonal entrieB,,, the average
equal to mig=X,(t),=Xn(t)). Hence, the normalization was over all pairs of different spike traina£ m). The ma-

should be trix elements were divided into three groups: distances be-
tween output spike trains generated faa] two sets of at-
_ : tractor spike traingv=1, ...,10, u=1,...,10, (pp) two
Ne nZ‘m min Z X”(t)’g Xm(V) ] @ sets of surrogate spike traifs=11, . . .,20, u=11, .. . ,20,

and @p) between a set of attractor spike trains and a set
The sliding-window average(t) was calculated for each Of surrogate spike traing»=1,...,10, p=11,...,20,
window as the number of coincidende,,<P divided by ~ where “a” stands for attractor and §” stands for Poisson
N.. The « defined here is adapted from a measure describetpurrogate The distance was also averaged over all elements
in Refs.[17,28. It was modified in order to yield correct of a given group, yieldingDz,(d), Dpy(a), Dzn(a),

results for ensembles consisting of neurons with differenD},(q), D:,p(q), andD;p(q).
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I ». These locking regimes were visible in the rastergram as
a sequence of straight lines on which the spike time varied
only weakly withl,. During locking the firing rate of the
neuron was constant and equal to a fractioin{) f4, of the
drive frequency. For 1.6 A/cm?<1,<2.055uA/cm?, the
neuron produced one spikea€1) on every two cyclesrf
050 =2). For the initial condition used here, the neuron spiked
on the even cycles for 1.68A/cm?<|,=<1.85uAlcm?,
and on the odd cycles for 1.86A/cm?<l,
<2.055uA/cm? [the nth cycle was the time interval be-
tween 1—1)T andnT, whereT=1/f;=25 ms]. The neu-
ron produced one spike per cycle fior=2.13 uAlcm? (the
phase-locking range extended to at lelgst 7.00 uA/cm?,
but this value was outside the physiological randa be-
tween the locking zones there were zones where the spike
time varied nonmonotonically with the driving current and
500 YT 3 500 where the firing rate was not constant. We further investi-
400 R 33 400 gated the current range betwedp=2.06 uA/cm? and
G300 | g Es E g 300 2.12 uAlcm? [Fig. 3(B)]. The first spike time was on the
& 200 SRIRE | & 200 second cycle for all values of,. However, the second spike
100 rExt 100 | - was on the third cycle for some values lpf, and on the

N F, ¥

0 50 100 150 200 90 1040 0 0750 100 150 200" 560 1040 fourth cycle for others. With each consecutive spike, the

t(ms) t(ms) range of contiguous current values that had the same spike

times up to the present cycle splits up in two groups with
FIG. 3. Dependence of the reliability on the stimulus amplitude . . .
I o. In each panel we show spike times as ticks in a rastergram: thglfferent spike times. After about 1000 ms the spike raster
x coordinate is the spike time and tiyecoordinate is either the did NOt show much structure. The lack of structure was two-
amplitudel , of the driving force(A,B), or the value of the voltage f0ld: the cycle on which a spike was obtained for a given
at the start of the simulatiofC,D), or else the trial indexg,P. For  current looked stochastic, but the actual phase of the spike
all simulations,l ;=0 wA/cm? with (A,B) D=0 and D,!,)=(C) within the cycle also had a larger jitter. The phase of a spike
(0,2.08, (D) (0,2.3, (E) (0.004, 2.08, and(F) (0.004, 2.3. Dwas depended, due to the pronounced afterhyperpolarization, on
expressed in m¥ms andl , in uwAlcn?, the sequence of interspike intervals that led to that particular
spike.
The diagonal elemenfd!, (D7,) represented the variabil- We compared the dependence on initial conditions for a
ity in the spike trains elicited by the same input across dif- phase-locked solutionl,=2.30 MA/C”‘ with that for a
ferent trials. We determined the meBy(D7) of D! (D7) nonlocked solution| ,=2.08 wAlcm?. We took a uniformly

across all sets of attractor spike trains=1, . . . ,10 and the ~SPaced grid of initial voltages betweeti=—75 m\Z/ and
meanD}(D7) across all sets of surrogate splke trains 20 MV with 5000 grid points fol ,=2.08 pAlcm” and

_ t 500 grid points foll ,=2.30 uAlcm?. Forl ,=2.08 uAlcm?
=11, ...,20. The distanceD, (D ) was normalized by [Fig. 3(C)], the rasters looked similar to those shown in Fig.

t
Da (Da)' 3(B) the first spike of the trial either occurred on the first or
second cycle. But part of the initial conditions that led to a
Il. RESULTS first spike on the first cycle led to a spike on the second
cycle, whereas the rest led to a spike on the third cycle.
Hence, the contiguous set of initial conditions that led to the
same sequence of spikes again splits up into smaller sets
We examined the spike trains produced by the model neuwith each consecutive cycle. After 1000 ms, these contigu-
ron when it was driven with a sinusoidal current. The drivingous sets have become smaller than the resolution of the
frequencyfy was 40 Hz and the amplitude, was varied. simulation grid and the dependence of spike time on the
The mean depolarizing currehd was zero, hence, the neu- initial condition looks random. This sensitive dependence on
ron was in an excitable state and would not spike in thenitial conditions is indicative of a chaotic systgi®7]. Al-
absence of the oscillating current. There was no intrinsithough we did not quantify the degree of chaos using the
noise, D=0. For each value of 5, the simulation was positivity of the Lyapunov exponent, we will still refer to this
started with an initial voltage/=—75 mV and the spike state as chaotic in the remainder. Fge=2.30 uA/cm?, the
times during a 1000 ms interval were recorded. The spikdirst spike either occurred on the first or second cycle. How-
times were plotted as ticks in a rastergram, yrmordinate  ever, starting from the third cycle all the spike times occurred
of the tick wasl 5 and thex coordinate was the spike time at the same time and the spikes remained lined up for the
[Fig. 3(A)]. The neuron started spiking when the drive am-duration of the trial. Hence, there was a stark contrast be-
plitudel , exceeded 1.22A/cm?. The neuron became phase tween the dependence on initial conditions for these two
locked for specific contiguous ranges of the driving currentcases. In the former case, the spike trains became more dis-

>
=

N
N N
=3 [}
 —
222 A ik fu oy
PSS bt e E—

I, (WA/em’)
I, (WA/cm’)

o | s s atiot o]

|
<
o

I,
o
a

|
fo2}
o

I
=2
o

Init Voltage (mV) ®)
Init Voltage (mV) U

-75 -75
0 50 100 150 200 990 1040 0 50 100 150 200 990 1040
t(ms t(ms)

i

A. Dependence of neural response reliability
on the stimulus amplitude
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similar as time went on, whereas in the latter case the spike
trains converged within a few cycles to the same spike train.
For integrate-and-fire neurons robustness against differen
initial conditions was related to the robustness against intrin-
sic noise[38]. We performed 500 simulations starting from
the same initial conditiovV=—75 mV, but each with a dif-
ferent random realization of the intrinsic noigég. 3(E) and
3(F)]. The variance of the intrinsic noise wa®
=0.004 m\f/ms. Forl ,=2.08 uAlcm? [Fig. 3E)], the jit-
ter in the first spike time was smal=0.45 ms, but it in-
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creased with time and saturated @+3.06 ms. The firing B ,a C

rate of the neuron wad$=29.80<40 Hz and it skipped ‘“D>]g VJW\«M ‘“D>

cycles. The skipping of cycles was random across trials anc 5

the reliability was reduced. Fop=2.3 uA/cm? [Fig. 3F)], oo — S

the jitter in the first spike time was=0.24 ms and saturated %, S W Y

to 0=0.56 ms at the end of the trial. The neurons spiked on = 2 £ —~

each cycle during each trial, indicating perfect reliability. E 1y f g sl Vo an
The above results show that a modest change in the am < %, 1000 2000 < 05 1000 2000

plitude of the driving force can result in large changes in the t (ms) t (ms)

reliability and precision of the spike trains across trials. In
the following we interpret the response across multiple trialst
as the response of multiple neurons across one trial, an
determine how it modulates the response of a receiving ens
semble.

FIG. 4. Transient increases in reliability and precision boosted
e firing rate in downstream cortical neuroitd.) (a) The sinu-
idal driving current and voltage traces fdm a neuron in the
st ensemble andc) one in the second ensembigl,e In each

panel we plot(top) the spike time histogram an@ottom) the ras-

tergram of 20 neurons afl) the first ensemble an@) the second
B. Modulation of firing rate by the reliability ensemble(B,C) In each panel, we show&) the population coeffi-

of input spike trains cient of variationCY,, (b) sliding average of the degree of coinci-

The dynamics of a neural circuit consisting of two en- dencex(t), and(c) the sliding average of the jitter estimatt),
for the spike trains of B, N,=200) the first ensemble an(,

iembles was StUdled'. The first ensemble_ co_nS|st|ng\I of N,=50) the second ensemble. Parameters for the first ensemble
=500 neurons was driven by a current oscillating at 40 Hz,

) ; ; were D=0.004 mV¥/ms andl,=0. During the time intervalt
The amplitude was transiently increased frorhy 0 g

B 5 5 i =750-1500 ms, I, was increased from 2.08A/cm? to
=2.08 uAlcm® to 2.3 pAlecm” between t=750 ms and 2.3 uAlcn?. The second ensemble was driven by the spike trains

1500 mgFig. 4Aa)]. The change of amplitude represented aut the first ensemble: each spike resulted in a unitary EPSC with an

transient increase of the power in the gamr_na—frequencglrnp”me 3<10~% mS/cn? and a decay constant of 3 g, was
range that was observed in local field potentie2d] and  equal to—0.3 wA/cm?.

electroencephalographic recordir@4,22. During the tran-
sient increase in amplitude, the firing rate, reliability, and b . o o
precision were increase@able ). For each neuron in the #C)]. Cy corresponds to a mix of precision and reliability, it
second ensemble, a different setMf, =100 spike trains IS the coefficient of variation of the interspike intervals of the
was random|y selected from tHe=500 neuronitriajs) in aggregate Spike trains. Note that a h|gh coefficent of varia-
the ensemble and was convolved with the shape of the excfion of the interspike intervals of aingle neuron implies
tatory postsynaptic conductanPSQ to obtain the synap- high variability. In contrast, a higke!) implies high reliabil-
tic conductance. The unitary EPSC was exponential with amity, that is, less variability in spike trains across triatds the
plitude 6g=3x10"4 mS/cnf. We first studied the case sliding average of the number of coincidenégairs of spike
without STD. The amplitude was selected so that the excitatimes from different neurons that differ by less than 2) ms
tory postsynaptic potentialeEPSP$ summed across input normalized by the number of possible coincidences &nsl
neurons had a magnitude between 3 and 6 mV. The synapti time-resolved measure proportional to the jitter. Modula-
conductance wave form was injected in each neuron of th&ons in the precision correspond to the inversépihereas
second ensemble with a white noise curréhie variance modulations in the reliability are directly related#oln both
wasD=0.04 m\#/ms) that was independent across the enensembles there was a robust increasé:ﬁ,’nand k, and a
semble of neurons. Note th@li is an order of magnitude robust decrease ifA during the transient increase in gamma
larger compared with that injected into the first ensembleyower|interval (i) in Table I].
(see the DiscussignDuring the transient increase in gamma  We also performed simulations where each neuron in the
power the firing rate of the second ensemble was stronglgecond ensemble received inputs from the same shi. of
increasedFig. 4Ae)]. The precision and reliability also in- =100 spike traingnot shown. Hence, the same synaptic
creasedTable ). conductance wave form was injected in each neuron together
The modulations in reliability and precision were mea-with a white noise current that was independent across the
sured using three statistic@f,’, k, and A [Figs. 4B) and ensemble of neurons. The results obtained in that way were
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TABLE I. Spiking statistics for ensembles 1 and 2. The firing fat€!,, degree of coincidence, and
jitter A were calculated during intervéi) (750—1500 msand interval(iii ) (1500—2250 msas described in
Sec. Il. We calculated using N,=200 neighbors for the first ensemble aNd=50 for the second en-
semble. Results labeled by the asterisk are obtained by driving each neuron in the second ensemble by the
same 100 neurons of the first ensemble.

Time interval f (Hz) cy K A (m9
Ensemble 1 (i) 39.96 17.15 0.96 0.26
Ensemble 1 (iii) 29.80 7.58 0.33 1.38
Ensemble 1, Poisson resampled (ii) 39.96 17.15 0.68 0.30
Ensemble 1, Poisson resampled (iii) 29.80 7.58 0.30 1.68
Ensemble 2*), no STD (i) 22.16 2.12 0.16 0.98
Ensemble 2*), no STD (iii) 5.83 1.82 0.06 3.70
Ensemble 2, no STD (i) 22.23 2.05 0.16 0.99
Ensemble 2, no STD (iii) 5.53 1.48 0.05 3.99
Ensemble 2*), STD (i) 15.56 2.01 0.11 1.34
Ensemble 2*), STD (iii) 8.63 1.68 0.06 2.53
Ensemble 2*), Poisson input, STD (i) 13.25 2.27 0.13 1.56
Ensemble 2*), Poisson input, STD (iii) 7.67 3.09 0.08 2.60

similar to those shown Fig. ésee Table | for a comparispn  was only injected in neurons of the first ensembléon-

The increase in firing rate of the second ensemble dueomitantly, the synchrony of the second ensemble reached its
to reliability and precision modulations induced by the tran-hjghest vaIue,C\'j%8.6, on the step of constant firing rate.
sient increase in gamma power depended on the value @fowever, theCl did not vary strongly with current on the
the constantzdrlvmg curreny [Fig. 5A) and §B)]. Io Was e The synchrony decreased again for higher valugg of
f0'3 pA/Cm” for the data shown in Fig. 4. For MOre néga- g range of driving currents, for which the firing rate was
tive values ofl, the neuron would hardly spike during time sensitive to the reliability and precision of the input in-
intervals(i) and(iii ), hence the relative increase in firing rate creased with the size of the unitary excitatory conductance
during time interval(ii) was even larger. For more positive The firing rate modulation could also potentially depend.
\ézltL\j\,eeseﬁﬂ(;),];hAe/Cir:;ng?]Ze(_)inzﬁr,il‘?(g;n:? tebg\ﬁsﬂrrier?ucg?éslll:@r on the number of inputs that the neurons in the second en-

: oK ! 9 ! semble received. To investigate this issue we vaKgg and

[during interval(ii)] andf, [during interval(iii )] were equal .
to the driving frequency 4 of the sinusoidal currertwhich ~ escaled the unitary conductande so that the mean synap-
tic conductance remained constant. Henég, was much

C larger for a small value oN.,,. The firing ratef; did not
% depend on the valudl,, [Fig. 5C)]. In contrast,f, de-
S} — 1 creased with increasiny.,, [Fig. 5(C)], as a result the boost
AL S X P in firing ratef, /f, also increased withN, [Fig. 5D)]. The
0 changes inf, andf,/f, saturated folN.,,>100. These re-
D sults indicate that there is a broad rangelNyf, values for
L4 W which precision and reliability of the inputs modulate the
S 2 firing rate.
1 0
o4 'Oif(uA(}fmz) 0z 04 10 N 10 C. Effect of non-Poisson statistics of input spike trains

In the preceding section there was no STD of the syn-
apses: Each presynaptic spike yielded the same unitary con-
ductance amplitude independent of the timing of the previ-
ous spikes produced by the presynaptic neuron. Hence, the
f,/f, vs (B) 1o and (D) Ngg,. Parameters were the same as in SYNaptic conductance wave form only depends on the distri-

Fig. 4 except thatA,B) I, for the neurons in the second ensemble PUtion of presynaptic spike times—the spike time histogram.
was varied andC,D) the number of input neurons was varied 1€ Spike trains produced by neurons driven by fluctuating
and the unitary conductance was rescaled accordingsgo Ccurrents in the presence of weak intrinsic noise do not form a
= (3% 10 2)/N,o, mS/cnt. The error bars were the standard devia- renewal process because the interspike intervals are corre-
tion across ten different random realizations of thg, inputs to  lated[18]. Hence, they do not satisfy Poisson statistics. We
the neuron. The error ify andf, in (A) andf, in (C) was smaller  refer to these spike trains as attractor spike trains or original
than the symbol size. spike trains. Surrogate spike trains were obtained by ran-

FIG. 5. Firing rate modulation by input reliability depends on
the depolarizing currenlt; and the number of inputhl,,. (A,C)
Firing ratef, during the time interval 750—1500 ms afglduring
1500-2250 ms plotted v&A) I, and (C) Ngo,. (B,D) The ratio
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B seems as if the firing rate of the Poisson-resampled first en-
' semble had decreased, but in both cases there were exactly
the same number of spikes. The resampling also resulted in a
broader distribution ofi(t) values.d(t) is shown as a func-
tion of time in Figs. §Ab) and &Bb) and its distribution is
shown in Figs. Ad) and &Bd). The synaptic drive injected
into neurons of the second ensemble was more variable for
Poisson statistic$Fig. 6(Bc)] compared with that for the
01 o5 o6 original spike traingFig. 6(Ac)]. These differences in the
d synaptic conductance waveforms led to different spike trains
[Figs. 6Ca and 6Da), respectively. This difference per-
sisted across trialg-ig. 6(Cb) and GDb), respectively and
J”HI ‘ HJ J—U— was especially salient in the spike time histogram. The height
of the peaks for Poisson statisti€Big. 6(Dc)] was more
variable than those for the original inp(Fig. 6C9. Despite
these differences the firing rate during inter¢@l was still

£
2
%) o WAV RN
£

500 1000 1500
t (ms)

.0
01 02 03 d0.4 05 06 02 03

higher than that during intervaii ) in response to both types
" “h,m of input spike trains.
300 1300 2300 300 1300 2300
t (ms) t(ms) D. Statistical analysis of the difference between attractor

FIG. 6. Downstream responses are sensitive to spike patterns. and surrogate responses

(A,B) In each panel, we showg) 20 spike trains from the first Figure 6 shows that the spike train response to an input
ensemble in a rastergrani) a scatterplot of the depression variable consisting of attractor spike train@ttractor response for
d(t), where thex coordinate is the arrival time of the EPSC and the shor is different from the response to surrogate spike trains
y coordinate is the value ad(t), (c) synaptic conductance wave wijth Poisson statistic§surrogate response for shorfhe
form, and(d) histogram of thel values for all EPSCSC,D) Ineach  difference between the responses depended on the specific
panel we showa) voltage trace of one neuroth) 20 spike trains, random realization of the set of input spike trains, that is,
and (c) spike time histogram for the second ensemble. Data inyhich of the N.,,= 100 spike trains were picked randomly
(A,C) are obtained using the originéttractoy spike trains of the among theN =500 neurons in the first ensemble. To deter-
first ensemble; the data ifB,D) are for Poisson surrogate spike iho \yhether the differences observed in Fig. 6 were statis-
trains. P_arameters were as in Fig. 4 except that the_re was short tertri?:ally significant, we compared the responses across 20 dif-
CiefreSSlosn and the unitary conductance was increasedgto ferent random realizations of the set of input spike trains,
=1x10"3 mS/ent. . ; :

comprised of ten sets of attractor spike trains and ten sets of
. surrogate spike trains. The pairwise distance between spike

domly distributing spike times across the different neurons Nrains was quantified using the metrics introduced by Victor

Fhe fII‘S't ensemb_le.' Alter thls.p'rocedu're the. spike trains S8 nd Purpurd35]. Spike trains are more dissimilar when the
isfy Poisson statistics. The original spike trains as well as th%istance between them is larger. Our implementation is de-

surrogate spike trains have_, by definition, the same spik cribed in the Methods section. Briefly, the metric was based
time histogram. The synaptic conductance wave form an n the set of interspike interval™(q) or spike timesD'(q)
the postsynaptic response of the second ensemble to theg

spike trains will be identical. However, when the synapses f:ssde%pggiﬁg n?}gtr?xf) ezrg:”n ?m;ggzislsgsgfgfer:’quﬁs Z)r(é
have STD the amplitude of the unitary synaptic conductancg1 . VATV Hlag

depends on the value of preceding interspike interisé® . € mean Q|stance between spike trains generated ?‘Cmss.m“"
the Methods The synaptic conductance wave form will be tiple trials N response o the same SEt.Qf input spike trains.
different for the original spike trains compared with that for Hence,D,, is a measure for the variability of the response

the surrogate spike trains. The question is to what exten‘iiue to intrinsic noise sources. The paramejaveighs the

these differences affect the firing rate and spike timing of théGI""t'Ve importance of differences in the spike times between

i ike trains versus differences in spike count. For sipdll
le. T h he g€ I erenc - cour
second ensemble. To address this issue we compared the Fé)dommated by reliability(differences in spike coupand

sponse of the second ensemble to the attractor spike trains 3¢ large q it is dominated by the precisiotiming differ-
the first ensemblgFigs. GA) and GC)] with the response to ence$. The variability was averaged across different sets of

surrogate spike trains with Poisson statisfiEgy. 6(B) and ) AR
6(D)]. For ease of comparison, each neuron in the Secon_attractor inputs to obtaiB;(D,) and across sets of surrogate

ensemble received inputs from the same seNgf,=100 INPULS to obtaiD (D). The output spike trains were com-
neurons. The corresponding rastergrams look diffefieigs. ~ Pared during intervalii), between 750 ms and 1500 ms
6(Aa) and &Ba)]. In the surrogate spike train there could be [Figs. TA)-7(F)]. The interval-based variabilitp of the
0,1,2 or more spikes on a cycle during interial, whereas ~ attractor response was approximately equabDfpover the

in the original spike train there usually was only one. Thisentire range ofj values studiedFig. 7(A)]. The rate of in-

led to gaps in the rastergram shown in FigB#& during  crease oD} with g accelerated aj=~0.01 ms *. For thesey
interval (i), which were not present in Fig(&a). Hence, it  values, random jitter in the spike times across neurons re-
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A B ceiving the same inputs became the dominant contribution to
20 - T T - the distance. The time-based variability behaved similarly,
except thatD! was larger than D}) starting from q
~0.01 ms!. The elements oD,, were divided in three
groups, the distance betweead) two attractor responses,
(pp) two surrogate responses, anapj an attractor and a
surrogate response. Only different pairs were considered,
hence there was no pa group. The individual cu@é;(q),
normalized byD], for each pair of input sets are shown in
Figs. 1C) and D). In this way the variability in the re-
sponse to different realizations of input spike trains is ex-
pressed in terms of the variability due to intrinsic noise. The
curves for @a) and (pp) had a different shape. There was a
large variability in the &p) curves. The means across all
pairs, D7,(D}4,), Dpy(Dyp), and D7, (D},) are shown in
Figs. 1E) and 1F) for the interval and time-based metrics,
respectively. The variabilitY 7, in attractor response to dif-
ferent input sets was approximately equal to the variability
D in the responses to one input $&ig. 7(E)]. Thus, the
attractor responses did not depend much on the actual real-
ization of the set of input spike trains. This implies that the

q (1/ms) q (1/ms)

0.8 ‘ .
0.001 0.010 0.100

2.0 e original spike trains of the first ensemble were similar. In
- DaaT/Dat contrast, the variabilityd 7, in surrogate responses was sig-
8 16+ D“PT/D% nificantly larger than eitheD] or Dg. For q<0.01 ms 1,
% -2 D,/D, D, was significantly larger than eith&Z, or Dj,. Forq
212 -.:-\111\ >0.01 ms?, it converged toDg,. Hence, attractor re-
= "" T sponses are more different from surrogate responses com-
pared with the differences among either surrogate or attractor

responses. The results for the time-based measires,
Dy, andDy,, were similar except theb,,, and D, were
smaller tharD},, for g>0.02 ms'®. The analysis of the out-

put spike trains during intervdiii) yielded similar results

16 | — Du/D, | [Figs. 1G) and TH)].
o === Dapt/DaT In summary, the difference between attractor and surro-
8 --D ’/Da‘ gate responses observed in Fig. 6 holds across different ran-
12~ " 1 dom realizations of the input spike trains.
Z
v - ALY
© 8 e T . IV, DISCUSSION
10.001 0-0110 0.100 0.001 0-0110 0.100 In recent years the issue of reliability has been extensively
q (1/ms) q (1/ms) studied both experimentallyl0-12,14,15,17,18as well as

) ) ) ) theoretically [9,13,38—43 An important motivation for

FIG. 7. Spike-metric analysis of the difference between attractoky,,4ving reliability is that reliable spike trains might be more
and surrogate responses. Mean variability of output spike trains iy transmitted between cortical areas. However, very
response o attractor spike tralnP;( and D, .SOI'd lineg and g, studies[40] have explicitly addressed this issue. We
surrogate spike tra!nsD(p and Dy, dashed "”e)Sf‘?r (A) the show that the reliability and precision of an ensemble of
interval-based metric andB) the time-based metric. For each neurons have a strong impact on downstream neuronal popu-

ir of input sets the distand®,, is sh ized in th . .
S?(;LSS,'(?Ua;e ENO Zttrsc?;r régpfnssegg np%r)g?\z'gesurlpogartze lations. In particular, the results presented here form a proof
responses, an(D) attractor and surrogate responses. The averag@f principle that weak tgmporal _modulf_;ltlons in the power of
distances for each group are ShoWB;G) D,,D7,,D 7, and(F,H) gamma-frequency oscillations in a given neural ensemble

ppl . . .
DY,,D\,,DL, for (E,F interval (ii) and (G,H) interval (iii). The with only moderate changes in firing rate can strongly affect

curves in(C), (E), and (G) were normalized by, those in(D),  fifing rate responses downstream via reliability. The basis for
(F), and (H) were normalized byD',. There were 20 sets of input this effect was the switch induced by small changes in the

spike trains, 10 were sets of attractor spike trains and 10 were seff@mma power between a chaotic state with unreliable spike
of surrogate spike trains. The attractor spike trains were randomijf@ins and an entrained state with reliable spike trains. From
chosen from the 500 trials in Fig(Ad). For each set of inputs, 40 a functional perspective it is better if the steady state of the
trials were generated. The metrics were calculated as described fitst ensemble is chaotic, since the steady-state firing rate of
Sec. Il. the second ensemble would be low. In response to behavior-
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ally relevant stimuli, transient increases in the gamma powethe driving current compared with the noise strength, phase-
would then be able to increase the firing rate of the seconébcking for m=1 would be stable, but would not be stable
ensemble. This is only feasible if the chaotic state is mordor m=2. A similar reliability resonance as a function of
probable in parameter space than the entrained state. For theving frequency was observed in experimefit8—-15,17.
model parameters studied here the current rdpder which  Hence the reliability and precision of the first ensemble
chaotic spike trains are obtained is much smaller than theould also be modulated by varying either frequeffigyor
range for which entrainment is obtained. It remains for fur-driving currentl, for sufficientlystrong intrinsic noise.
ther investigation to determine what the relative size of cha- An application of phase locking in olfactory computation
otic versus entrained regimes is for more realistic drivingwas recently described by Hopfield and co-worke@—51].
stimuli. When many neurons have a similar firing rate, they become
The neurons in the second ensemble are driven by bagasily synchronized. Synchrony can be induced by weak syn-
rages of EPSPs. The reliability of the first ensemble deteraptic coupling, or by a common oscillating drive to which
mined the mean number of EPSPs in the barrages, wheregse neurons phase lock. The latter case corresponds to the
its precision (or jitter) determined the amplitude of the reliability resonance reported in Reff9,13-15,38 This
summed EPSPs. The higher the precision, the more coincsynchrony can be detected by downstream neurons, to per-
dent the EPSPs were, hence the higher the deflection of thgrm the “many are equal” calculatiofs1].
postsynaptic membrane potential was. The entrainment of For the purpose of analysis, spike trains obtained on mul-
the first ensemble worked to increase the amplitude of théiple trials of a neuron are often considered as different real-
fluctuations in the synaptic drive. A neuron is in the balancedzations of the same underlying Poisson process with a time-
state when it receives approximately equal amounts of excivarying firing rate[52]. However, spike trains produced by
tation and inhibition[44]. The firing rate of neurons in the neurons driven by fluctuating stimulus wave forms form a
balanced state is sensitive to the amplitude of the fluctuanonrenewal procegd8,36. Hence, they do not satisfy Pois-
tions, whereas when it is unbalanced the firing rate is mostlgon statistics. We compared the response to attractor spike
determined by the meafB83,44-48. For the parameters trains obtained from the model neuron to the response to
used here, we found a range of driving curremts=  surrogate spike trains with Poisson statistics. The surrogate
—0.40-0.10uA/cm? where the neuron was in the balancedspike trains were generated by randomly distributing the
state. Changes in the reliability and precision of the inputspikes in the original set across the neurons in the ensemble.
ensemble could in that case strongly modulate the neuron'®hen the synaptic connections between the two ensembles
firing rate. displayed STD, the neural response was significantly differ-
The noise level in the two ensembles is a critical variableent. This is a biased comparison, since the surrogate spike
For the purpose of this investigation intrinsic noise as well asrains differ in two aspects from the original spike trains: the
background synaptic inputs were modeled as a white noisgitervals are independertas are the spike timgsand the
current with variance R [33]. For the first ensemble it was distribution of intervals is exponential unlike the original
D=0.004 mV/mé, whereas for the second ensemble it wasspike trains. A more proper procedure would be to construct
D=0.04 mV/m$. The order of magnitude difference M  renewal spike trains with the same interval distribution as the
values is significant. Due to the chaotic properties of theoriginal spike traing18,53. However, the implications of
ensemble fot =2.08 uAlcm?, a small dispersion in the ini- our manipulations are clear: the non-Poisson statistics of real
tial conditions across different neurons quickly evolved intospike trains is revealed in the presence of synaptic mecha-
less reliable and precise spike trains. A similar phenomenonisms that depend on the preceding sequence of interspike
was observed using a periodically driven Fitzhugh-Nagumantervals. This means that the impact of a spike depends on
model[42]. Hence, noise was not necessary to generate urthe neuron that produced it, essentially turning each spike
reliability. However, when the driving current was increasedtrain into alabeled line[54]. It is not clear to what extent
to 1,=2.3 uA /cm?, all neurons in the ensemble convergedspike patterns are present in cortex unievivo conditions
to exactly the same stat¢ghe same voltagd/ and gating and what their role in information processing is. However,
variables up to machine precisijoriWhen the current was preliminary analysis of datf8] obtained from cat lateral
then reduced tb,=2.08 wA/cm? all neurons would be, and geniculate nucleus, a subcortical structure providing input
remain, in the same state—yielding reliable spike trains. Tdhe visual cortex, shows evidence for spike patt¢&i.
counteract this effect we added a weak noise term so that the We have investigated how the firing rate of a neuron is
neurons would be a little bit different during the phase-modulated by the precision and reliability of the ensemble of
locked state. These small differences would then quickly ininput neurons. The model system was not developed to rep-
crease upon entering the chaotic state. resent a specific cortical area of a specific animal. Rather it
For a higher level of depolarizatioh,>0.2 uAlcm?, the  was formulated to illustrate the general principle that reli-
neurons are periodically spiking in the absence of any periability and precision can significantly affect downstream
odic driving current [,=0). In that case, we found that the neuronal responses. However, we would also like to make
neurons would phase lock to the periodic drive for almost allthe point that this general principle may be relevant to corti-
values ofl, andl,, and would firen spikes inm cycles. cal information processing. To this purpose we need to jus-
However, the robustness of the phase locked state againt#y how our model applies to the cortex. Our model is simi-
intrinsic noise was different and decreased with the value ofar to recent work by Aertsen and co-work€fs6], van
m. Hence, depending on the relative size of the amplitude oRossum and co-workef§7], and Brody and Hopfiel@i51].
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Neither our model, nor the aforementioned models incorpocorrespond to the size of cortical column aNg,, to how
rate all experimentally observed properties of the corticaimany neurons of that cortical column project to the same
circuit and its constituent neurons. The physiology andheuron in the receiving cortical column. In a model for pri-
anatomy of cortical circuits are still the subject of intensemary visual cortex a cortical column consisted of about a
study and new data are emerging regularly. Besides, it wouldundred neuron§61]. That number may reflect a trade-off
indeed be hard to identify what property is responsible for aetween the small grain of the simulation and practical com-
specific functional behavior observed in very detailed ancputability. The statistical properties fod=500 of the first
complex models. In our model we make the following as-ensemble were not much different from those fo= 1000
SumptionS:(l) The connections from the first ensemble to (resu'ts not ShOV\m Furthermore, similar results were ob-
the secqnd ensemble are excitatory and display short terRined for a broad range of.., valuegFigs. 5C) and 3D)].
depression(2) the neurons only have a fast transient sodiumrs ingicates that our results should be representative for a
current, a delayed rectifier potassium current, and a leak cUgoaq range of cortical column sizes. Note that cortical neu-
rent; (3) there areN =500 neurons in an ensemblé) each rons typically receive more than a hundred inputs, recent

neuron in the second ensemble receives inputs MK o estimates that there are at least thousands of inputs

=100 neurons of the first ensemblg) the neurons in an [62]. These inputs were not explicitly included in the model,
ensemble are not con.nected among themse{ggshere are but they were represented as a stochastic noise cutgnt
no feedback connections from the second ensemble to th(e

first ensemble7) there are no inhibitory neurons. In the see the Methods . . .
following we discuss these assumptions in relation to cortica] | €'€ aré extensive recurrent excitatory connections be-
cireuits. tween nearby pyramidal cells in the cortg89]. Our model

We could identify each ensemble with a different cortical 088 not incorporate these, but it is expected that the in-
area. The pyramidal cells of the superficial layer of the firstré@ses in firing rate that we observed would be amplified by
cortical area project to cells in layer 4 of the second corticaf€current excitation. Hence, it could only strengthen our re-
area[29]. Cortical pyramidal cells are usually excitatory Sults.
[29], hence this projection is presumably excitatory. Al- Regarding corticocortical connections Douglas and Mar-
though STD has been observed for synapses between difféin write in Ref.[29]: The pattern that has emerged is that
ent layer 5 pyramidal cell8] and synapses from layer 4 to the pyramidal cells of the superficial layers project to middle
layer 2/3 pyramidal cell§32], it has not been observed for layers (principally layer 4) of their target area, whereas the
projections between different cortical areas. The lack of evideep layer pyramidals project outside the middle layers to
dence for STD in this case is due to the difficulty of preserv-superficial and deep layers. These patterns have been used to
ing the connections between two cortical areas in the corticatlassify patterns as feedforward (projecting to layer 4), or
slice preparation and finding a pair of connected neurons ifeedback (projecting outside layer 4). All cortical areas are
these two areas. The lack of evidence does, however, raiseciprocally connected by these feedforward and feedback
the issue of how important STD is for the results reportedpathways. In the face of multiple parallel pathways project-
here. We obtained strong firing rate modulations withing to and from cortical and subcortical areas these simple
precision/reliability irrespective of whether the synapses hadlassifications of feedforward and feedback may not translate
STD (Fig. 6) or not(Fig. 4). The non-Poisson structure of the in functional significanceHere we studied the behavior of
spike trains generated by the first ensemble was evidenced ase pathway between two cortical areas in isolation. As the
correlations between consecutive interspike intervals. To deabove quotation indicates, these pathways do not exist in
termine the potential impact of these correlations we lookedsolation, rather they are part of a complicated network of
for a biophysical mechanism that was sensitive to these cocortical areas. The question then is how does a change in
relations. STD is such a mechanism as well as spike timingeliability and precision in one cortical area affect the rest of

dependent plasticitysee, for instance, Ref59]). the interconnected cortical areas. This issue remains for fur-
The nerve cell types in the cortex display a large numbether study.
of different calcium and potassium channfgg$§] in addition We could also identify the ensembles as corresponding to

to the fast transient sodium current and the delayed rectifiedifferent layers in the same cortical area. The cortical cir-
potassium current. These additional currents were not ineuitry of area V1 in the macaqgue monkey has been reviewed
cluded in our model. This omission could have importantby Callaway{63]. The picture is still incomplete, but support
consequences: these channels influence how the precisifor a canonical cortical circuit diagram has emerged. There is
and reliability of the neurons in the first ensemble is affecteca feedforward pathway going from the lateral geniculate
by periodic drives, and they determine how the neurons imucleus to layer 4C proceeding on to layer 2-4B. There are
the second ensemble would respond. This is still a field oflso two feedback loops: one starting from and returning to
active research. We therefore elected to use a simple modklyer 4C via layer 6, and the other starting from and return-
that still had realistic spikes, rather than the popular leakyng to layer 2-4B via layer 5. This is only a summary of the
integrate-and-fire modef20,30. We have, however, ad- excitatorypathways. Approximately 20% of all cortical neu-
dressed the first issue in a recent pa@ar rons are inhibitonf29]. Inhibitory neurons are thought to be
The cortex has a columnar organizati@®]. Neurons in  important for controlling the timing of pyramidal cell§4—
the same cortical column have similar stimulus preference66]. The inhibitory pathways are probably as complex as the
and receive similar synaptic inputs. In our modelwould  excitatory ones. This raises the issue of how the firing rate is
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modulated by the reliability and precision of ensembles ofmodulations of reliability and precision in one cortical layer.
inhibitory neurons. Preliminary results indicate that the firingWe plan to address this problem in a future study.

rate of the neurons in the second ensemble is also strongly

modulated by the precisiofsynchrony of inhibitory inputs AU LS SIS

[67]. It is at present unclear how a circuit consisting of | thank Jorge V. Josand Peter J. Thomas for helpful
multiple excitatory and inhibitory loops would react to comments on the manuscript.
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