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Chaos-induced modulation of reliability boosts output firing rate in downstream cortical areas

P. H. E. Tiesinga
Department of Physics & Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA

~Received 2 June 2003; published 31 March 2004!

The reproducibility of neural spike train responses to an identical stimulus across different presentations
~trials! has been studied extensively. Reliability, the degree of reproducibility of spike trains, was found to
depend in part on the amplitude and frequency content of the stimulus@J. Hunter and J. Milton, J. Neuro-
physiol.90, 387~2003!#. The responses across different trials can sometimes be interpreted as the response of
an ensemble of similar neurons to a single stimulus presentation. How does the reliability of the activity of
neural ensembles affect information transmission between different cortical areas? We studied a model neural
system consisting of two ensembles of neurons with Hodgkin-Huxley-type channels. The first ensemble was
driven by an injected sinusoidal current that oscillated in the gamma-frequency range~40 Hz! and its output
spike trains in turn drove the second ensemble by fast excitatory synaptic potentials with short term depression.
We determined the relationship between the reliability of the first ensemble and the response of the second
ensemble. In our paradigm the neurons in the first ensemble were initially in a chaotic state with unreliable and
imprecise spike trains. The neurons became entrained to the oscillation and responded reliably when the
stimulus power was increased by less than 10%. The firing rate of the first ensemble increased by 30%,
whereas that of the second ensemble could increase by an order of magnitude. We also determined the response
of the second ensemble when its input spike trains, which had non-Poisson statistics, were replaced by an
equivalent ensemble of Poisson spike trains. The resulting output spike trains were significantly different from
the original response, as assessed by the metric introduced by Victor and Purpura@J. Neurophysiol.76, 1310
~1996!#. These results are a proof of principle that weak temporal modulations in the power of gamma-
frequency oscillations in a given cortical area can strongly affect firing rate responses downstream by way of
reliability in spite of rather modest changes in firing rate in the originating area.

DOI: 10.1103/PhysRevE.69.031912 PACS number~s!: 87.19.La, 87.19.Dd, 87.19.Nn
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I. INTRODUCTION

The reproducibility of neural spike train responses to
identical stimulus across different trials has recently be
studied using a large number of different experimental pre
rations and stimulus ensembles@1–9#. When the neuron is
driven by a fluctuating stimulus the spike trains are of
similar across trials, leading to peaks of elevated fir
frequency—events—in the spike time histogram@10–17#. A
variety of measures have been used to quantify the degre
reproducibility of spike trains@4,11,13,17,18#. There are
three different aspects of reproducibility, two of which c
be quantified using only the spike time histogram. Thereli-
ability of an event is the fraction of trials during which
spike is obtained during an event, theprecisionis the inverse
of the jitter in spike times during an event@11#. The third
measure derives from non-Poisson statistics due to spike
terns in trains of neural discharge@18,19#. The attractor re-
liability is a measure of the robustness of these patterns
cannot be determined using only the spike time histogr
Indeed, it quantifies the deviation of the spike train statis
from Poisson statistics@18#. The responses across differe
trials can sometimes be interpreted as the response o
ensemble of similar neurons to one stimulus presenta
@20#. Reliability then corresponds to the degree of synchro
between different neurons.

Localized synchronous oscillations in the gamm
frequency range~30–80 Hz! have been observed using h
man electroencephalographic recordings under various
havioral conditions@21,22# and may be under control o
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neuromodulators~see Ref.@23# and references therein!. In
macaque monkeys attention modulated the degree of co
ence in the gamma-frequency range between neurons in
tical area V4 and the local field potential~LFP! @24,25#. The
reliability of neurons injected by oscillating currents h
been studied experimentally@12–15,17,26#. For small driv-
ing amplitudes~compared with the intrinsic noise level! the
discharge was unreliable, whereas for large amplitudes it
reliable across a large frequency range. However, for in
mediate amplitudes, reliability depended on driving fr
quency: it was enhanced when neurons were phase lo
@17#. These results predict that reliabilityin vivo can be
modulated by the presence of synchronous oscillations.
question then is, what would be the downstream effect
these reliability modulations?

We consider the information transmission between t
model cortical areas, each represented by an ensemb
neurons~Fig. 1!. Our goal is to determine the following:~1!
the relationship between the reliability of the first ensem
and the firing rate of the second ensemble; and~2! to what
extent~non-Poisson! spike patterns in the output spike train
of the first ensemble affect the response of the second
semble. The model neurons had Hodgkin-Huxley-ty
voltage-gated channels and were connected by fast excita
synapses with short term depression~STD, see the Methods!.
The first ensemble was driven by an injected current t
oscillated in the gamma-frequency range and its output sp
trains in turn drove the second ensemble. The oscillat
current represented the inputs of neurons that were sync
nized in the gamma-frequency range. Their activity cor
©2004 The American Physical Society12-1
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sponds to what would be measured as oscillations in
local field potential @24#. In experiments on behavin
macaque monkeys, the power in the gamma-frequency ra
of the LFP displayed transient increases@24,25#. In our simu-
lations these were modeled as increases in the amplitud
the oscillatory current. Our results are as follows: A sm
transient increase in gamma power led to a modest incr
in the firing rate of the first ensemble together with an
creased reliability and precision. However, the firing rate
the second ensemble increased even more. The spike t
of the first ensemble had non-Poisson statistics becaus
the presence of spike patterns. When the input spike train
the second ensemble were replaced by an equivalent i
with Poisson statistics, the strong increase in firing rate of
second ensemble was still obtained, but the output sp
trains were significantly different.

II. METHODS

A. Neuron model

The model consisted of two ensembles, each withN
5500 neurons~Fig. 1!. Each neuron had a fast transie
sodium currentI Na , a delayed rectifier potassium currentI K ,
and a leak currentI L and was injected by a time-varyin
current, I (t)5I 01I A cos 2pfdt, and a white noise curren
Cmh. The mean ofh was zero,̂ h(t)&50, and the variance
was 2D, ^h(t)h(t8)&52Dd(t2t8). Here^•& is the average
over the noise ensemble andCm51 mF/cm2 is the mem-
brane capacitance~normalized by area!. The driving fre-
quency wasf d540 Hz. The equation for the membrane p
tential V reads

Cm

dV

dt
52I Na2I K2I L1I ~ t !1Cmh~ t !. ~1!

The model equations for the single neuron and impleme
tion are exactly as described in Ref.@27# and are not repeate
here. The model used here was adapted from that introdu
by Wang and Buzsaki@28#.

FIG. 1. Diagram of the network geometry. The first ensem
consisted ofN5500 neurons, each driven by a sinusoidal curre
The second ensemble also consisted ofN5500 neurons. Each o
them received AMPAergic synaptic inputs from a different set
Ncon5100 neurons chosen randomly from the first ensemble.
neurons in ensembles 1 and 2 were not connected among t
selves. There were also no feedback connections from ensem
to ensemble 1.
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Each neuron in the second ensemble received inputs f
Ncon5100 neurons from the first ensemble.N represents the
number of similar neurons receiving approximately the sa
inputs, whereasNcon is the number of these neurons th
project to one given downstream neuron. The appropria
ness of our choice ofN andNcon values in relation to data on
cortical circuits will be discussed in the Discussion. T
neurons were connected bya-amino-3-hydroxy-5-
methyl-4-isooxazolepropionic acid~AMPA! synapses@29#.
The unitary strength of synaptic inputs is history depend
on multiple time scales@30#. STD reduces the synapti
strength when the presynaptic neuron produces spikes
high rate. A number of computational roles have been p
posed for STD: it can remove redundancy in spike trains@31#
and provide cortical gain control@32#. Here we use the
model for STD that is given in Ref.@32#. Each spike from a
neuron in the first ensemble led to a current pu
dgd(t)e2t/t(V2EAMPA) in the postsynaptic neuron. Her
t53 ms @29# was the synaptic decay constant,d(t) was the
depression variable,dg5gmax/Ncon was the unitary conduc
tance, t was the time since the arrival of the presynap
spike, andEAMPA50 mV is the reversal potential. The max
mum synaptic conductance wasgmax50.1 mS/cm2 for simu-
lations with STD andgmax50.03 mS/cm2 for those without
STD. Each time a presynaptic neuron fired,d was reduced by
a factor 0.75after the spike was transmitted. Between tw
presynaptic spikesd(t) approached unity exponentially wit
a time constant equal to 300 ms@32#.

The standard set of parameters was, for the first ensem
I 050.0 mA/cm2, D50.004 mV/ms2, andI A52.08mA/cm2

~chaotic state! or I A52.30mA/cm2 ~phase-locked state!. For
the second ensemble,I 0520.3 mA/cm2, D50.04 mV2/ms
and I A50.

B. Statistical analysis

General notation.Spike times were calculated as the tim
that the membrane potential@V in Eq. ~1!# crossed 0 mV
from below. tni is the i th spike time by thenth neuron,
likewise tm j is the j th spike time by themth neuron. Since
neurons within an ensemble are not coupled,tni could
equivalently be considered as thei th spike during thenth
trial. N is the total number of neurons in the ensemble~or the
total number of trials!, Ns is the number of spikes~by all
neurons or during all the trials! generated during a given
simulation run. For some calculations it is convenient to p
the spike times of all neurons together into one s
$t1 , . . . ,tn , . . . ,tNs

%, ordered from low to high values. Th

ordered set is indexed byn, wheren51 is the earliest spike
andn5Ns is the latest. Most of the statistical quantities d
termined from the simulations were spike based; that is,
each measurementyn there is an associated spike timetn .
For instance,yn could be an interspike interval andtn could
be the first spike time of the interval. The specific choices
y are given below. In some cases the simulation runs w
divided into three intervals:~i! 0,t,750 ms, when the first
ensemble is in a chaotic state;~ii ! 750 ms,t,1500 ms,
when the first ensemble is phase locked, and~iii ! 1500 ms
,t,2250 ms, when the first ensemble has returned t
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CHAOS-INDUCED MODULATION OF RELIABILITY . . . PHYSICAL REVIEW E69, 031912 ~2004!
chaotic state. Averages ofy were determined for each o
these intervals, using all theyn that had atn in the interval
under consideration. Since thetn are ordered, this is a con
tiguous set,nb<n<ne (b stands for begin ande stands for
end!.

^y&5
1

ne112nb
(

n5nb

ne

yn , ^t&5
1

ne112nb
(

n5nb

ne

tn .

~2!

We also determined the time-resolved average using a sli
window of lengthTav that was translated along the time ax
with increments equal toTincr. The position of the sliding
window was indicated by the indexk. The resulting average
^y&k and ^t&k are over alln values with (k21)Tincr<tn

,(k21)Tincr1Tav . Tav andTincr are expressed in terms o
nav and nincr using the relationsTav5Tmax/nav and Tincr
5(Tmax2Tav)/nincr . We usednav525, nincr575, andTmax
52500 ms@the last 250 ms of the simulation were not i
cluded in interval~iii ! in order to make its length equal t
that of interval~ii !#.

Standard spike train statistics. The mean firing ratef is
defined as the number of spikes divided by the duration
the measurement interval. The mean firing rate is determ
for each time interval@~i!–~iii !#. The neuron was driven by
an oscillatory current with periodT51/f d525 ms. Since the
firing rate of the neuron was less than 40 Hz, there would
be more than one spike per cycle@thenth cycle was the time
interval between (n21)T andnT]. The jitters is defined as
the standard deviation across trials of the spike times o
given cycle, averaged across all cycles during the time in
val of interest.

Binned spike train statistics. A binned representation
Xn(t) of the spike train of thenth neuron is obtained by
setting Xn(t) equal to the number of spikes betweent
2Dt/2 and t1Dt/2. For the model neuron used here t
relative refractory period is larger than 2 ms. Hence,
small binwidth Dt<2 ms, there cannot be more than on
spike per bin. The spike time histogram, ST
5(1000Dt/N)X(t), is proportional to the sum ofXn over all
neurons,X5(n51

N Xn ~sinceDt is expressed in milliseconds
the factor 1000 assures that STH is in hertz!.

Interspike-distance reliability and synchrony measur.
The CV

P measure is based on the idea that during relia
~synchronous! states the minimum distance between spik
of different neurons is reduced compared with unrelia
~asynchronous! states. The interspike interval of thecom-
bined set of ensemble spikes istn5tn112tn . Note that
these interspike intervals are betweendifferentneurons. The
coefficient of variation is

CV
P5

A^tn
2&n2^tn&n

2

^tn&n
,

HereP stands for population and̂•&n is the average over al
intervals. The intervaltn can be identified with three time
tn , tn11, and the mean (tn1tn11)/2. For the sliding-window
average,CV

P(t), the latter was used.CV
P depends only on the
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aggregate set of spike times and it is not sensitive to wh
neuron produced a given spike. Hence, it can not be use
distinguish, for instance, a Poisson process from a Gam
process with an ordern.1 @33#.

For an asynchronous ensemble each neuron fired inde
dently at a constant rate. The spike time histogram is the
fore approximately constant as a function of time. Wh
each neuron produces a homogeneous Poisson spike
the CV ~coefficient of variation, or the standard deviation
the single neuron’sinterspike intervals divided by the mean!
will be equal to one. The sum of independent Poisson p
cesses is also a Poisson process. The coefficient of varia
CV

P of the aggregate spike train is therefore also one. T
variance in theCV

P value across different realizations of th
ensemble only depends on the number of spikesNs in the
aggregate spike train, not on the number of neuronsN in the
ensemble.~Numerically we found that forNs510 spikes,
CV

P50.9260.24, forNs5100, CV
P50.9960.10, and forNs

51000,CV
P51.0060.03, errors were the standard deviati

across 1000 realizations.! When the neuron produced rando
spike trains that were not Poisson and had CVs differ
from one, the value ofCV

P did depend onN. We conjecture
that for large enough ensemblesCV

P'1 in the asynchronous
state. We performed simulations to test this conjecture
determined at whatN value CV

P approached unity~Fig. 2!.
Random spike trains with a CV of less than one were gen
ated from Poisson spike trains by removing every ot
spike. The expected value of the CV was 1/A2'0.707 and
the mean interspike interval was 20 ms. Random spike tra
with a CV larger than one were generated using an intersp
interval distribution that was the sum of two exponent
distributions: distribution 1 had a mean of 1 ms and dis
bution 2 had a mean of 10 ms. This type of bimodal dis
bution is representative of a neuron firing doublets. Fo
given spike train the even ISIs came from distribution 1 a
the odd ISIs from distribution 2. In that way we obtain
sequence consisting of a repeating motif of a long inter
followed by a short interval. The actual spike times are giv
by the cumulative sum over all the ISIs. The CV of th

FIG. 2. The CV
P of an asynchronous ensemble ofN neurons

converges to 1. For this example, each neuron produced a ran
spike train with CV'1.52 ~circles!, CV51 ~Poisson spike train,
squares!, and CV'0.707~diamonds!. The construction of the spike
trains is described in the text. Error bars are the standard devia
across ten different realizations of the ensemble of spike trains
2-3
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resulting spike train was'1.523. For each spike train,
transient of 100 ms was discarded and the remaining 1
ms were used for analysis. For an ensemble ofN510 spike
trains with CV values different from one, theCV

P was signifi-
cantly different from 1, but, forN51000, the ensembles ha
CV

P values close to one~Fig. 2!. Based on these numerica
results we expect that for sets of a few hundred spike tra
with a constant rate and a CV different from one, theCV

P for
the asynchronous state will be close to unity.

For a perfectly synchronous~reliable! ensemble withN
neurons oscillating with periodT, the set$tn% consists of
Ns /N21 intervals equal toT andNs2Ns /N short intervals
between spikes that are part of the same event. We eva
CV

P in the limit that the lengthD of these short intervals goe
to zero. Hence, to first order inD,

CV
P5Aa@12~a/T1T/a!bD#,

with a5(Ns21)/(Ns /N21) and b5(Ns /N)(N21)/(Ns

21). For largeNs , CV
P reduces toAN. Thus, (CV

P21)/AN
is a measure for synchrony that is normalized between 0
1. SinceN is constant, we will useCV

P without this normal-
ization.CV

P is sensitive to the precision of the ensemble d
charge as well as to the degree of coincidence.

The nearest-neighbor distance of spiketni from the spikes
of neuronm is

Dmni5min
j

utni2tm ju,

the minimum is taken over all spike timestm j of neuronm.
There areNs different spikes and for each spike there a
N21 different nearest-neighbor distances to the other n
rons in the ensemble. Hence, there areNp5(N21)Ns
nearest-neighbor distances, referred to as pairs. Note
each pair is counted twice,Dmni5Dnm j , because it is asso
ciated withtni as well as withtm j . The coincidence factork
is defined as the number ofDmni,P, divided by the maxi-
mum number of coincidencesNc , hereP is a preset preci-
sion, typically equal to 2 ms. The number ofDmni,P cannot
exceedNp , hence takingNc5Np5(N21)Ns would yield a
number between 0 and 1~note thatNs is now the total num-
ber of spikes in the interval under consideration!. However,
when the minimum single-neuron interspike interval is larg
thanP for all neurons, the number of coincidences in a p
of neurons (n,m) cannot be larger than the minimum of th
number of spikes produced by neuronsn and m, formally
equal to min„( tXn(t),( tXm(t)…. Hence, the normalization
should be

Nc5 (
nÞm

minS (
t

Xn~ t !,(
t

Xm~ t ! D . ~3!

The sliding-window averagek(t) was calculated for each
window as the number of coincidenceDmni,P divided by
Nc . Thek defined here is adapted from a measure descr
in Refs. @17,28#. It was modified in order to yield correc
results for ensembles consisting of neurons with differ
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mean firing rates@34# so that it could resolve fast tempora
modulations in the degree of coincidence.

An estimate for the dispersion of the spike times in
event can be obtained fromDmni . For a given spike timetni

we take the mean of theND lowest values ofDmni . This
value is averaged across alltni in the averaging time interva
of lengthTav to obtainD(t). WhenND is somewhat smaller
than the mean number of neurons firing on each cycle,D(t)
is proportional to the dispersion in the spike times.

Spike metrics.The distance between spike trains w
quantified using the metrics introduced by Victor and P
pura @35#. The metric based on the spike times wasDt(q),
and the one based on the interspike intervals wasDt(q). The
distance between two spike trains was the minimum cos
transform one spike train into the other by moving or del
ing existing spike times~interspike intervals! or adding spike
times ~interspike intervals!. The cost of adding or deleting
spike ~interval! was one and the cost wasq to move a spike
over 1 ms~increase or decrease an interval by 1 ms~Ref.
@68#!!.

Our goal was to determine the statistics of the dista
between the output spike train generated in response to
of attractor spike trains and the output spike train genera
in response to surrogate spike trains. The spike trains
duced by the neurons of the first ensemble did not sat
Poisson statistics@18#, to indicate this we refer to them a
‘‘attractor spike trains’’ or sometimes as ‘‘original spik
trains.’’ Surrogate spike trains were obtained by random
distributing spike times across the different neurons in
first ensemble. After this procedure short segments in
spike train have Poisson statistics@18,36#. We implemented
this in MATLAB using two arrays: one containing the spik
times, and the other containing the index of the neuron t
produced the spike. The elements of the array containing
neuron index were then randomly permuted usingRAND-

PERM. Ten sets of attractor spike trains and ten sets of su
gate spike trains were generated, and the conductance w
forms corresponding to each of these sets were injected
the model neuron on 40 trials. This yielded 800 output sp
trains. The spike trains were labeled by the input-spike-tra
set indicesn andm and the trial indicesn andm. Dnn,mm was
the distance between the output spike trains labeled bynn
and mm, respectively.Dnm was the distance between th
spike trains generated in response to setm and those gener
ated in response to setn averaged over all pairs (n,m) of
trials n51, . . . ,40belonging to setn andm51, . . . ,40 be-
longing to setm. For the diagonal entriesDnn , the average
was over all pairs of different spike trains (nÞm). The ma-
trix elements were divided into three groups: distances
tween output spike trains generated by (aa) two sets of at-
tractor spike trains~n51, . . .,10, m51, . . . ,10!, (pp) two
sets of surrogate spike trains~n511, . . .,20,m511, . . . ,20!,
and (ap) between a set of attractor spike trains and a
of surrogate spike trains~n51, . . .,10, m511, . . . ,20!,
where ‘‘a’’ stands for attractor and ‘‘p’’ stands for Poisson
~surrogate!. The distance was also averaged over all eleme
of a given group, yieldingDaa

t (q), Dpp
t (q), Dap

t (q),
Daa

t (q), Dpp
t (q), andDap

t (q).
2-4
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CHAOS-INDUCED MODULATION OF RELIABILITY . . . PHYSICAL REVIEW E69, 031912 ~2004!
The diagonal elementsDnn
t (Dnn

t ) represented the variabil
ity in the spike trains elicited by the same input across d
ferent trials. We determined the meanDa

t (Da
t) of Dnn

t (Dnn
t )

across all sets of attractor spike trains~n51, . . . ,10! and the
mean Dp

t (Dp
t ) across all sets of surrogate spike trains~n

511, . . . ,20!. The distanceDnm
t (Dnm

t ) was normalized by
Da

t (Da
t).

III. RESULTS

A. Dependence of neural response reliability
on the stimulus amplitude

We examined the spike trains produced by the model n
ron when it was driven with a sinusoidal current. The drivi
frequencyf d was 40 Hz and the amplitudeI A was varied.
The mean depolarizing currentI 0 was zero, hence, the neu
ron was in an excitable state and would not spike in
absence of the oscillating current. There was no intrin
noise, D50. For each value ofI A , the simulation was
started with an initial voltageV5275 mV and the spike
times during a 1000 ms interval were recorded. The sp
times were plotted as ticks in a rastergram, they coordinate
of the tick wasI A and thex coordinate was the spike tim
@Fig. 3~A!#. The neuron started spiking when the drive a
plitude I A exceeded 1.22mA/cm2. The neuron became phas
locked for specific contiguous ranges of the driving curr

FIG. 3. Dependence of the reliability on the stimulus amplitu
I A . In each panel we show spike times as ticks in a rastergram
x coordinate is the spike time and they coordinate is either the
amplitudeI A of the driving force~A,B!, or the value of the voltage
at the start of the simulation~C,D!, or else the trial index~E,F!. For
all simulations,I 050 mA/cm2 with ~A,B! D50 and (D,I A)5~C!
~0,2.08!, ~D! ~0,2.3!, ~E! ~0.004, 2.08!, and~F! ~0.004, 2.3!. D was
expressed in mV2/ms andI A in mA/cm2.
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I A . These locking regimes were visible in the rastergram
a sequence of straight lines on which the spike time var
only weakly with I A . During locking the firing rate of the
neuron was constant and equal to a fraction, (n/m) f d , of the
drive frequency. For 1.63mA/cm2<I A<2.055mA/cm2, the
neuron produced one spike (n51) on every two cycles (m
52). For the initial condition used here, the neuron spik
on the even cycles for 1.63mA/cm2<I A<1.85mA/cm2,
and on the odd cycles for 1.85mA/cm2,I A
<2.055mA/cm2 @the nth cycle was the time interval be
tween (n21)T and nT, whereT51/f d525 ms]. The neu-
ron produced one spike per cycle forI A>2.13mA/cm2 ~the
phase-locking range extended to at leastI A57.00mA/cm2,
but this value was outside the physiological range!. In be-
tween the locking zones there were zones where the s
time varied nonmonotonically with the driving current an
where the firing rate was not constant. We further inve
gated the current range betweenI A52.06mA/cm2 and
2.12mA/cm2 @Fig. 3~B!#. The first spike time was on the
second cycle for all values ofI A . However, the second spik
was on the third cycle for some values ofI A , and on the
fourth cycle for others. With each consecutive spike,
range of contiguous current values that had the same s
times up to the present cycle splits up in two groups w
different spike times. After about 1000 ms the spike ras
did not show much structure. The lack of structure was tw
fold: the cycle on which a spike was obtained for a giv
current looked stochastic, but the actual phase of the s
within the cycle also had a larger jitter. The phase of a sp
depended, due to the pronounced afterhyperpolarization
the sequence of interspike intervals that led to that partic
spike.

We compared the dependence on initial conditions fo
phase-locked solution,I A52.30mA/cm2, with that for a
nonlocked solution,I A52.08mA/cm2. We took a uniformly
spaced grid of initial voltages betweenV5275 mV and
250 mV with 5000 grid points forI A52.08mA/cm2 and
500 grid points forI A52.30mA/cm2. For I A52.08mA/cm2

@Fig. 3~C!#, the rasters looked similar to those shown in F
3~B! the first spike of the trial either occurred on the first
second cycle. But part of the initial conditions that led to
first spike on the first cycle led to a spike on the seco
cycle, whereas the rest led to a spike on the third cy
Hence, the contiguous set of initial conditions that led to
same sequence of spikes again splits up into smaller
with each consecutive cycle. After 1000 ms, these conti
ous sets have become smaller than the resolution of
simulation grid and the dependence of spike time on
initial condition looks random. This sensitive dependence
initial conditions is indicative of a chaotic system@37#. Al-
though we did not quantify the degree of chaos using
positivity of the Lyapunov exponent, we will still refer to thi
state as chaotic in the remainder. ForI A52.30mA/cm2, the
first spike either occurred on the first or second cycle. Ho
ever, starting from the third cycle all the spike times occurr
at the same time and the spikes remained lined up for
duration of the trial. Hence, there was a stark contrast
tween the dependence on initial conditions for these t
cases. In the former case, the spike trains became more

he
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similar as time went on, whereas in the latter case the s
trains converged within a few cycles to the same spike tr

For integrate-and-fire neurons robustness against diffe
initial conditions was related to the robustness against int
sic noise@38#. We performed 500 simulations starting fro
the same initial conditionV5275 mV, but each with a dif-
ferent random realization of the intrinsic noise@Fig. 3~E! and
3~F!#. The variance of the intrinsic noise wasD
50.004 mV2/ms. ForI A52.08mA/cm2 @Fig. 3~E!#, the jit-
ter in the first spike time was small,s50.45 ms, but it in-
creased with time and saturated ats53.06 ms. The firing
rate of the neuron wasf 529.80,40 Hz and it skipped
cycles. The skipping of cycles was random across trials
the reliability was reduced. ForI A52.3 mA/cm2 @Fig. 3~F!#,
the jitter in the first spike time wass50.24 ms and saturate
to s50.56 ms at the end of the trial. The neurons spiked
each cycle during each trial, indicating perfect reliability.

The above results show that a modest change in the
plitude of the driving force can result in large changes in
reliability and precision of the spike trains across trials.
the following we interpret the response across multiple tr
as the response of multiple neurons across one trial,
determine how it modulates the response of a receiving
semble.

B. Modulation of firing rate by the reliability
of input spike trains

The dynamics of a neural circuit consisting of two e
sembles was studied. The first ensemble consisting oN
5500 neurons was driven by a current oscillating at 40 H
The amplitude was transiently increased fromI A
52.08mA/cm2 to 2.3mA/cm2 between t5750 ms and
1500 ms@Fig. 4~Aa!#. The change of amplitude represented
transient increase of the power in the gamma-freque
range that was observed in local field potentials@24# and
electroencephalographic recordings@21,22#. During the tran-
sient increase in amplitude, the firing rate, reliability, a
precision were increased~Table I!. For each neuron in the
second ensemble, a different set ofNcon5100 spike trains
was randomly selected from theN5500 neurons~trials! in
the ensemble and was convolved with the shape of the e
tatory postsynaptic conductance~EPSC! to obtain the synap-
tic conductance. The unitary EPSC was exponential with a
plitude dg5331024 mS/cm2. We first studied the cas
without STD. The amplitude was selected so that the exc
tory postsynaptic potentials~EPSPs! summed across inpu
neurons had a magnitude between 3 and 6 mV. The syna
conductance wave form was injected in each neuron of
second ensemble with a white noise current~the variance
wasD50.04 mV2/ms) that was independent across the
semble of neurons. Note thatD is an order of magnitude
larger compared with that injected into the first ensem
~see the Discussion!. During the transient increase in gamm
power the firing rate of the second ensemble was stron
increased@Fig. 4~Ae!#. The precision and reliability also in
creased~Table I!.

The modulations in reliability and precision were me
sured using three statistics,CV

P , k, and D @Figs. 4~B! and
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4~C!#. CV
P corresponds to a mix of precision and reliability,

is the coefficient of variation of the interspike intervals of t
aggregate spike trains. Note that a high coefficent of va
tion of the interspike intervals of asingle neuron implies
high variability. In contrast, a highCV

P implies high reliabil-
ity, that is, less variability in spike trains across trials.k is the
sliding average of the number of coincidences~pairs of spike
times from different neurons that differ by less than 2 m!
normalized by the number of possible coincidences andD is
a time-resolved measure proportional to the jitter. Modu
tions in the precision correspond to the inverse ofD, whereas
modulations in the reliability are directly related tok. In both
ensembles there was a robust increase inCV

P and k, and a
robust decrease inD during the transient increase in gamm
power @interval ~ii ! in Table I#.

We also performed simulations where each neuron in
second ensemble received inputs from the same set ofNcon
5100 spike trains~not shown!. Hence, the same synapt
conductance wave form was injected in each neuron toge
with a white noise current that was independent across
ensemble of neurons. The results obtained in that way w

FIG. 4. Transient increases in reliability and precision boos
the firing rate in downstream cortical neurons.~A! ~a! The sinu-
soidal driving current and voltage traces for~b! a neuron in the
first ensemble and~c! one in the second ensemble.~d,e! In each
panel we plot~top! the spike time histogram and~bottom! the ras-
tergram of 20 neurons of~d! the first ensemble and~e! the second
ensemble.~B,C! In each panel, we show~a! the population coeffi-
cient of variationCV

P , ~b! sliding average of the degree of coinc
dencek(t), and~c! the sliding average of the jitter estimateD(t),
for the spike trains of~B, ND5200) the first ensemble and~C,
ND550) the second ensemble. Parameters for the first ense
were D50.004 mV2/ms and I 050. During the time intervalt
5750–1500 ms, I A was increased from 2.08mA/cm2 to
2.3 mA/cm2. The second ensemble was driven by the spike tra
of the first ensemble; each spike resulted in a unitary EPSC with
amplitude 331024 mS/cm2 and a decay constant of 3 ms.I 0 was
equal to20.3 mA/cm2.
2-6
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TABLE I. Spiking statistics for ensembles 1 and 2. The firing ratef, CV
P , degree of coincidencek, and

jitter D were calculated during interval~ii ! ~750–1500 ms! and interval~iii ! ~1500–2250 ms! as described in
Sec. II. We calculatedD using ND5200 neighbors for the first ensemble andND550 for the second en-
semble. Results labeled by the asterisk are obtained by driving each neuron in the second ensemb
same 100 neurons of the first ensemble.

Time interval f ~Hz! CV
P k D ~ms!

Ensemble 1 ~ii ! 39.96 17.15 0.96 0.26

Ensemble 1 ~iii ! 29.80 7.58 0.33 1.38

Ensemble 1, Poisson resampled ~ii ! 39.96 17.15 0.68 0.30

Ensemble 1, Poisson resampled ~iii ! 29.80 7.58 0.30 1.68

Ensemble 2~* !, no STD ~ii ! 22.16 2.12 0.16 0.98

Ensemble 2~* !, no STD ~iii ! 5.83 1.82 0.06 3.70

Ensemble 2, no STD ~ii ! 22.23 2.05 0.16 0.99

Ensemble 2, no STD ~iii ! 5.53 1.48 0.05 3.99

Ensemble 2~* !, STD ~ii ! 15.56 2.01 0.11 1.34

Ensemble 2~* !, STD ~iii ! 8.63 1.68 0.06 2.53

Ensemble 2~* !, Poisson input, STD ~ii ! 13.25 2.27 0.13 1.56

Ensemble 2~* !, Poisson input, STD ~iii ! 7.67 3.09 0.08 2.60
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similar to those shown Fig. 4~see Table I for a comparison!.
The increase in firing rate of the second ensemble

to reliability and precision modulations induced by the tra
sient increase in gamma power depended on the valu
the constant driving currentI 0 @Fig. 5~A! and 5~B!#. I 0 was
20.3 mA/cm2 for the data shown in Fig. 4. For more neg
tive values ofI 0 the neuron would hardly spike during tim
intervals~i! and~iii !, hence the relative increase in firing ra
during time interval~ii ! was even larger. For more positiv
values ofI 0, the increase in firing rate was reduced. ForI 0
between 0.1mA/cm2 and 0.2mA/cm2, both firing ratesf 1
@during interval~ii !# and f 2 @during interval~iii !# were equal
to the driving frequencyf d of the sinusoidal current~which

FIG. 5. Firing rate modulation by input reliability depends o
the depolarizing currentI 0 and the number of inputsNcon. ~A,C!
Firing rate f 1 during the time interval 750–1500 ms andf 2 during
1500–2250 ms plotted vs~A! I 0 and ~C! Ncon. ~B,D! The ratio
f 1 / f 2 vs ~B! I 0 and ~D! Ncon. Parameters were the same as
Fig. 4 except that~A,B! I 0 for the neurons in the second ensemb
was varied and~C,D! the number of input neurons was varie
and the unitary conductance was rescaled according todg
5(331022)/Ncon mS/cm2. The error bars were the standard dev
tion across ten different random realizations of theNcon inputs to
the neuron. The error inf 1 and f 2 in ~A! and f 1 in ~C! was smaller
than the symbol size.
03191
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was only injected in neurons of the first ensemble!. Con-
comitantly, the synchrony of the second ensemble reache
highest value,CV

P'8.6, on the step of constant firing rat
However, theCV

P did not vary strongly with current on the
step. The synchrony decreased again for higher values oI 0.
The range of driving currentsI 0 for which the firing rate was
sensitive to the reliability and precision of the input i
creased with the size of the unitary excitatory conductan

The firing rate modulation could also potentially depe
on the number of inputs that the neurons in the second
semble received. To investigate this issue we variedNcon and
rescaled the unitary conductancedg so that the mean synap
tic conductance remained constant. Hence,dg was much
larger for a small value ofNcon. The firing ratef 1 did not
depend on the valueNcon @Fig. 5~C!#. In contrast, f 2 de-
creased with increasingNcon @Fig. 5~C!#, as a result the boos
in firing rate f 1 / f 2 also increased withNcon @Fig. 5~D!#. The
changes inf 2 and f 1 / f 2 saturated forNcon.100. These re-
sults indicate that there is a broad range ofNcon values for
which precision and reliability of the inputs modulate th
firing rate.

C. Effect of non-Poisson statistics of input spike trains

In the preceding section there was no STD of the s
apses: Each presynaptic spike yielded the same unitary
ductance amplitude independent of the timing of the pre
ous spikes produced by the presynaptic neuron. Hence
synaptic conductance wave form only depends on the di
bution of presynaptic spike times—the spike time histogra
The spike trains produced by neurons driven by fluctuat
currents in the presence of weak intrinsic noise do not form
renewal process because the interspike intervals are c
lated @18#. Hence, they do not satisfy Poisson statistics.
refer to these spike trains as attractor spike trains or orig
spike trains. Surrogate spike trains were obtained by r
2-7
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P. H. E. TIESINGA PHYSICAL REVIEW E69, 031912 ~2004!
domly distributing spike times across the different neurons
the first ensemble. After this procedure the spike trains
isfy Poisson statistics. The original spike trains as well as
surrogate spike trains have, by definition, the same sp
time histogram. The synaptic conductance wave form
the postsynaptic response of the second ensemble to
spike trains will be identical. However, when the synap
have STD the amplitude of the unitary synaptic conducta
depends on the value of preceding interspike intervals~see
the Methods!. The synaptic conductance wave form will b
different for the original spike trains compared with that f
the surrogate spike trains. The question is to what ex
these differences affect the firing rate and spike timing of
second ensemble. To address this issue we compared th
sponse of the second ensemble to the attractor spike trai
the first ensemble@Figs. 6~A! and 6~C!# with the response to
surrogate spike trains with Poisson statistics@Fig. 6~B! and
6~D!#. For ease of comparison, each neuron in the sec
ensemble received inputs from the same set ofNcon5100
neurons. The corresponding rastergrams look different@Figs.
6~Aa! and 6~Ba!#. In the surrogate spike train there could
0,1,2 or more spikes on a cycle during interval~ii !, whereas
in the original spike train there usually was only one. Th
led to gaps in the rastergram shown in Fig. 6~Ba! during
interval ~ii !, which were not present in Fig. 6~Aa!. Hence, it

FIG. 6. Downstream responses are sensitive to spike patte
~A,B! In each panel, we show~a! 20 spike trains from the firs
ensemble in a rastergram,~b! a scatterplot of the depression variab
d(t), where thex coordinate is the arrival time of the EPSC and t
y coordinate is the value ofd(t), ~c! synaptic conductance wav
form, and~d! histogram of thed values for all EPSCs.~C,D! In each
panel we show~a! voltage trace of one neuron,~b! 20 spike trains,
and ~c! spike time histogram for the second ensemble. Data
~A,C! are obtained using the original~attractor! spike trains of the
first ensemble; the data in~B,D! are for Poisson surrogate spik
trains. Parameters were as in Fig. 4 except that there was short
depression and the unitary conductance was increased todg
5131023 mS/cm2.
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seems as if the firing rate of the Poisson-resampled first
semble had decreased, but in both cases there were ex
the same number of spikes. The resampling also resulted
broader distribution ofd(t) values.d(t) is shown as a func-
tion of time in Figs. 6~Ab! and 6~Bb! and its distribution is
shown in Figs. 6~Ad! and 6~Bd!. The synaptic drive injected
into neurons of the second ensemble was more variable
Poisson statistics@Fig. 6~Bc!# compared with that for the
original spike trains@Fig. 6~Ac!#. These differences in the
synaptic conductance waveforms led to different spike tra
@Figs. 6~Ca! and 6~Da!, respectively#. This difference per-
sisted across trials@Fig. 6~Cb! and 6~Db!, respectively# and
was especially salient in the spike time histogram. The he
of the peaks for Poisson statistics@Fig. 6~Dc!# was more
variable than those for the original input~Fig. 6Cc!. Despite
these differences the firing rate during interval~ii ! was still
higher than that during interval~iii ! in response to both type
of input spike trains.

D. Statistical analysis of the difference between attractor
and surrogate responses

Figure 6 shows that the spike train response to an in
consisting of attractor spike trains~attractor response fo
short! is different from the response to surrogate spike tra
with Poisson statistics~surrogate response for short!. The
difference between the responses depended on the sp
random realization of the set of input spike trains, that
which of theNcon5100 spike trains were picked random
among theN5500 neurons in the first ensemble. To det
mine whether the differences observed in Fig. 6 were sta
tically significant, we compared the responses across 20
ferent random realizations of the set of input spike trai
comprised of ten sets of attractor spike trains and ten set
surrogate spike trains. The pairwise distance between s
trains was quantified using the metrics introduced by Vic
and Purpura@35#. Spike trains are more dissimilar when th
distance between them is larger. Our implementation is
scribed in the Methods section. Briefly, the metric was ba
on the set of interspike intervalsDt(q) or spike timesDt(q)
and depended on a parameterq. The distances were ex
pressed as the matrixDnm

t (Dnm
t ). The diagonal elements ar

the mean distance between spike trains generated across
tiple trials in response to the same set of input spike tra
Hence,Dnn is a measure for the variability of the respon
due to intrinsic noise sources. The parameterq weighs the
relative importance of differences in the spike times betwe
spike trains versus differences in spike count. For smallq, D
is dominated by reliability~differences in spike count! and
for large q it is dominated by the precision~timing differ-
ences!. The variability was averaged across different sets
attractor inputs to obtainDa

t(Da
t ) and across sets of surroga

inputs to obtainDp
t (Dp

t ). The output spike trains were com
pared during interval~ii !, between 750 ms and 1500 m
@Figs. 7~A!–7~F!#. The interval-based variabilityDa

t of the
attractor response was approximately equal toDp

t over the
entire range ofq values studied@Fig. 7~A!#. The rate of in-
crease ofDa

t with q accelerated atq'0.01 ms21. For theseq
values, random jitter in the spike times across neurons

s.

n

rm
2-8



n to
rly,

,

red,

in

x-
he
a
ll

s,
-
lity

real-
he
In
g-

om-
ctor

rro-
ran-

ely

re
ry
e
of

opu-
oof
of
ble
ect
for
the
ike
om
the
e of
ior-

cto
s

h

ag

t
s
m

ed
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FIG. 7. Spike-metric analysis of the difference between attra
and surrogate responses. Mean variability of output spike train
response to attractor spike trains (Da

t and Da
t , solid lines! and

surrogate spike trains (Dp
t and Dp

t , dashed lines! for ~A! the
interval-based metric and~B! the time-based metric. For eac
pair of input sets the distanceDnm is shown organized in three
groups: ~C, aa) two attractor responses,~C, pp) two surrogate
responses, and~D! attractor and surrogate responses. The aver
distances for each group are shown:~E,G! Daa

t ,Dpp
t ,Dpa

t and~F,H!
Daa

t ,Dpp
t ,Dpa

t for ~E,F! interval ~ii ! and ~G,H! interval ~iii !. The
curves in~C!, ~E!, and ~G! were normalized byDa

t , those in~D!,
~F!, and ~H! were normalized byDa

t . There were 20 sets of inpu
spike trains, 10 were sets of attractor spike trains and 10 were
of surrogate spike trains. The attractor spike trains were rando
chosen from the 500 trials in Fig. 4~Ad!. For each set of inputs, 40
trials were generated. The metrics were calculated as describ
Sec. II.
03191
ceiving the same inputs became the dominant contributio
the distance. The time-based variability behaved simila
except that Da

t was larger thanDp
t starting from q

'0.01 ms21. The elements ofDnm were divided in three
groups, the distance between (aa) two attractor responses
(pp) two surrogate responses, and (ap) an attractor and a
surrogate response. Only different pairs were conside
hence there was no pa group. The individual curvesDnm

t (q),
normalized byDa

t , for each pair of input sets are shown
Figs. 7~C! and 7~D!. In this way the variability in the re-
sponse to different realizations of input spike trains is e
pressed in terms of the variability due to intrinsic noise. T
curves for (aa) and (pp) had a different shape. There was
large variability in the (ap) curves. The means across a
pairs, Daa

t (Daa
t ), Dpp

t (Dpp
t ), and Dap

t (Dap
t ) are shown in

Figs. 7~E! and 7~F! for the interval and time-based metric
respectively. The variabilityDaa

t in attractor response to dif
ferent input sets was approximately equal to the variabi
Da

t in the responses to one input set@Fig. 7~E!#. Thus, the
attractor responses did not depend much on the actual
ization of the set of input spike trains. This implies that t
original spike trains of the first ensemble were similar.
contrast, the variabilityDpp

t in surrogate responses was si
nificantly larger than eitherDa

t or Dp
t . For q,0.01 ms21,

Dap
t was significantly larger than eitherDaa

t or Dpp
t . For q

.0.01 ms21, it converged toDpp
t . Hence, attractor re-

sponses are more different from surrogate responses c
pared with the differences among either surrogate or attra
responses. The results for the time-based measures,Daa

t ,
Dpp

t , andDap
t , were similar except thatDpp

t andDap
t were

smaller thanDaa
t for q.0.02 ms21. The analysis of the out-

put spike trains during interval~iii ! yielded similar results
@Figs. 7~G! and 7~H!#.

In summary, the difference between attractor and su
gate responses observed in Fig. 6 holds across different
dom realizations of the input spike trains.

IV. DISCUSSION

In recent years the issue of reliability has been extensiv
studied both experimentally@10–12,14,15,17,18# as well as
theoretically @9,13,38–43#. An important motivation for
studying reliability is that reliable spike trains might be mo
faithfully transmitted between cortical areas. However, ve
few studies@40# have explicitly addressed this issue. W
show that the reliability and precision of an ensemble
neurons have a strong impact on downstream neuronal p
lations. In particular, the results presented here form a pr
of principle that weak temporal modulations in the power
gamma-frequency oscillations in a given neural ensem
with only moderate changes in firing rate can strongly aff
firing rate responses downstream via reliability. The basis
this effect was the switch induced by small changes in
gamma power between a chaotic state with unreliable sp
trains and an entrained state with reliable spike trains. Fr
a functional perspective it is better if the steady state of
first ensemble is chaotic, since the steady-state firing rat
the second ensemble would be low. In response to behav
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ally relevant stimuli, transient increases in the gamma po
would then be able to increase the firing rate of the sec
ensemble. This is only feasible if the chaotic state is m
probable in parameter space than the entrained state. Fo
model parameters studied here the current rangeI A for which
chaotic spike trains are obtained is much smaller than
range for which entrainment is obtained. It remains for f
ther investigation to determine what the relative size of c
otic versus entrained regimes is for more realistic driv
stimuli.

The neurons in the second ensemble are driven by
rages of EPSPs. The reliability of the first ensemble de
mined the mean number of EPSPs in the barrages, whe
its precision ~or jitter! determined the amplitude of th
summed EPSPs. The higher the precision, the more co
dent the EPSPs were, hence the higher the deflection o
postsynaptic membrane potential was. The entrainmen
the first ensemble worked to increase the amplitude of
fluctuations in the synaptic drive. A neuron is in the balanc
state when it receives approximately equal amounts of e
tation and inhibition@44#. The firing rate of neurons in the
balanced state is sensitive to the amplitude of the fluc
tions, whereas when it is unbalanced the firing rate is mo
determined by the mean@33,44–48#. For the parameters
used here, we found a range of driving currentsI 05
20.40–0.10mA/cm2 where the neuron was in the balanc
state. Changes in the reliability and precision of the in
ensemble could in that case strongly modulate the neur
firing rate.

The noise level in the two ensembles is a critical variab
For the purpose of this investigation intrinsic noise as wel
background synaptic inputs were modeled as a white n
current with variance 2D @33#. For the first ensemble it wa
D50.004 mV/ms2, whereas for the second ensemble it w
D50.04 mV/ms2. The order of magnitude difference inD
values is significant. Due to the chaotic properties of
ensemble forI 52.08mA/cm2, a small dispersion in the ini
tial conditions across different neurons quickly evolved in
less reliable and precise spike trains. A similar phenome
was observed using a periodically driven Fitzhugh-Nagu
model @42#. Hence, noise was not necessary to generate
reliability. However, when the driving current was increas
to I A52.3 mA /cm2, all neurons in the ensemble converg
to exactly the same state~the same voltageV and gating
variables up to machine precision!. When the current was
then reduced toI A52.08mA/cm2 all neurons would be, and
remain, in the same state—yielding reliable spike trains.
counteract this effect we added a weak noise term so tha
neurons would be a little bit different during the phas
locked state. These small differences would then quickly
crease upon entering the chaotic state.

For a higher level of depolarization,I 0.0.2 mA/cm2, the
neurons are periodically spiking in the absence of any p
odic driving current (I A50). In that case, we found that th
neurons would phase lock to the periodic drive for almost
values of I A and I 0, and would firen spikes inm cycles.
However, the robustness of the phase locked state ag
intrinsic noise was different and decreased with the value
m. Hence, depending on the relative size of the amplitude
03191
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the driving current compared with the noise strength, pha
locking for m51 would be stable, but would not be stab
for m52. A similar reliability resonance as a function o
driving frequency was observed in experiments@13–15,17#.
Hence the reliability and precision of the first ensemb
could also be modulated by varying either frequencyf d or
driving currentI 0 for sufficientlystrong intrinsic noise.

An application of phase locking in olfactory computatio
was recently described by Hopfield and co-workers@49–51#.
When many neurons have a similar firing rate, they beco
easily synchronized. Synchrony can be induced by weak s
aptic coupling, or by a common oscillating drive to whic
the neurons phase lock. The latter case corresponds to
reliability resonance reported in Refs.@9,13–15,38#. This
synchrony can be detected by downstream neurons, to
form the ‘‘many are equal’’ calculation@51#.

For the purpose of analysis, spike trains obtained on m
tiple trials of a neuron are often considered as different re
izations of the same underlying Poisson process with a ti
varying firing rate@52#. However, spike trains produced b
neurons driven by fluctuating stimulus wave forms form
nonrenewal process@18,36#. Hence, they do not satisfy Pois
son statistics. We compared the response to attractor s
trains obtained from the model neuron to the response
surrogate spike trains with Poisson statistics. The surrog
spike trains were generated by randomly distributing
spikes in the original set across the neurons in the ensem
When the synaptic connections between the two ensem
displayed STD, the neural response was significantly dif
ent. This is a biased comparison, since the surrogate s
trains differ in two aspects from the original spike trains: t
intervals are independent~as are the spike times! and the
distribution of intervals is exponential unlike the origin
spike trains. A more proper procedure would be to constr
renewal spike trains with the same interval distribution as
original spike trains@18,53#. However, the implications of
our manipulations are clear: the non-Poisson statistics of
spike trains is revealed in the presence of synaptic mec
nisms that depend on the preceding sequence of inters
intervals. This means that the impact of a spike depends
the neuron that produced it, essentially turning each sp
train into a labeled line@54#. It is not clear to what exten
spike patterns are present in cortex underin vivo conditions
and what their role in information processing is. Howev
preliminary analysis of data@8# obtained from cat latera
geniculate nucleus, a subcortical structure providing in
the visual cortex, shows evidence for spike patterns@55#.

We have investigated how the firing rate of a neuron
modulated by the precision and reliability of the ensemble
input neurons. The model system was not developed to
resent a specific cortical area of a specific animal. Rathe
was formulated to illustrate the general principle that re
ability and precision can significantly affect downstrea
neuronal responses. However, we would also like to m
the point that this general principle may be relevant to co
cal information processing. To this purpose we need to j
tify how our model applies to the cortex. Our model is sim
lar to recent work by Aertsen and co-workers@56#, van
Rossum and co-workers@57#, and Brody and Hopfield@51#.
2-10
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Neither our model, nor the aforementioned models incor
rate all experimentally observed properties of the corti
circuit and its constituent neurons. The physiology a
anatomy of cortical circuits are still the subject of inten
study and new data are emerging regularly. Besides, it wo
indeed be hard to identify what property is responsible fo
specific functional behavior observed in very detailed a
complex models. In our model we make the following a
sumptions:~1! The connections from the first ensemble
the second ensemble are excitatory and display short
depression;~2! the neurons only have a fast transient sodi
current, a delayed rectifier potassium current, and a leak
rent; ~3! there areN5500 neurons in an ensemble;~4! each
neuron in the second ensemble receives inputs fromNcon
5100 neurons of the first ensemble;~5! the neurons in an
ensemble are not connected among themselves;~6! there are
no feedback connections from the second ensemble to
first ensemble;~7! there are no inhibitory neurons. In th
following we discuss these assumptions in relation to cort
circuits.

We could identify each ensemble with a different cortic
area. The pyramidal cells of the superficial layer of the fi
cortical area project to cells in layer 4 of the second corti
area @29#. Cortical pyramidal cells are usually excitato
@29#, hence this projection is presumably excitatory. A
though STD has been observed for synapses between d
ent layer 5 pyramidal cells@58# and synapses from layer 4 t
layer 2/3 pyramidal cells@32#, it has not been observed fo
projections between different cortical areas. The lack of e
dence for STD in this case is due to the difficulty of prese
ing the connections between two cortical areas in the cort
slice preparation and finding a pair of connected neuron
these two areas. The lack of evidence does, however, r
the issue of how important STD is for the results repor
here. We obtained strong firing rate modulations w
precision/reliability irrespective of whether the synapses
STD ~Fig. 6! or not~Fig. 4!. The non-Poisson structure of th
spike trains generated by the first ensemble was evidence
correlations between consecutive interspike intervals. To
termine the potential impact of these correlations we loo
for a biophysical mechanism that was sensitive to these
relations. STD is such a mechanism as well as spike tim
dependent plasticity~see, for instance, Ref.@59#!.

The nerve cell types in the cortex display a large num
of different calcium and potassium channels@60# in addition
to the fast transient sodium current and the delayed rect
potassium current. These additional currents were not
cluded in our model. This omission could have importa
consequences: these channels influence how the prec
and reliability of the neurons in the first ensemble is affec
by periodic drives, and they determine how the neurons
the second ensemble would respond. This is still a field
active research. We therefore elected to use a simple m
that still had realistic spikes, rather than the popular lea
integrate-and-fire model@20,30#. We have, however, ad
dressed the first issue in a recent paper@9#.

The cortex has a columnar organization@29#. Neurons in
the same cortical column have similar stimulus preferen
and receive similar synaptic inputs. In our model,N would
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correspond to the size of cortical column andNcon to how
many neurons of that cortical column project to the sa
neuron in the receiving cortical column. In a model for p
mary visual cortex a cortical column consisted of abou
hundred neurons@61#. That number may reflect a trade-o
between the small grain of the simulation and practical co
putability. The statistical properties forN5500 of the first
ensemble were not much different from those forN51000
~results not shown!. Furthermore, similar results were ob
tained for a broad range ofNcon values@Figs. 5~C! and 5~D!#.
This indicates that our results should be representative f
broad range of cortical column sizes. Note that cortical n
rons typically receive more than a hundred inputs, rec
work estimates that there are at least thousands of in
@62#. These inputs were not explicitly included in the mod
but they were represented as a stochastic noise currentCmh
~see the Methods!.

There are extensive recurrent excitatory connections
tween nearby pyramidal cells in the cortex@29#. Our model
does not incorporate these, but it is expected that the
creases in firing rate that we observed would be amplified
recurrent excitation. Hence, it could only strengthen our
sults.

Regarding corticocortical connections Douglas and M
tin write in Ref. @29#: The pattern that has emerged is th
the pyramidal cells of the superficial layers project to midd
layers (principally layer 4) of their target area, whereas th
deep layer pyramidals project outside the middle layers
superficial and deep layers. These patterns have been us
classify patterns as feedforward (projecting to layer 4),
feedback (projecting outside layer 4). All cortical areas a
reciprocally connected by these feedforward and feedb
pathways. In the face of multiple parallel pathways proje
ing to and from cortical and subcortical areas these simp
classifications of feedforward and feedback may not trans
in functional significance.Here we studied the behavior o
one pathway between two cortical areas in isolation. As
above quotation indicates, these pathways do not exis
isolation, rather they are part of a complicated network
cortical areas. The question then is how does a chang
reliability and precision in one cortical area affect the rest
the interconnected cortical areas. This issue remains for
ther study.

We could also identify the ensembles as correspondin
different layers in the same cortical area. The cortical c
cuitry of area V1 in the macaque monkey has been review
by Callaway@63#. The picture is still incomplete, but suppo
for a canonical cortical circuit diagram has emerged. Ther
a feedforward pathway going from the lateral genicula
nucleus to layer 4C proceeding on to layer 2-4B. There
also two feedback loops: one starting from and returning
layer 4C via layer 6, and the other starting from and retu
ing to layer 2-4B via layer 5. This is only a summary of th
excitatorypathways. Approximately 20% of all cortical neu
rons are inhibitory@29#. Inhibitory neurons are thought to b
important for controlling the timing of pyramidal cells@64–
66#. The inhibitory pathways are probably as complex as
excitatory ones. This raises the issue of how the firing rat
2-11
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modulated by the reliability and precision of ensembles
inhibitory neurons. Preliminary results indicate that the firi
rate of the neurons in the second ensemble is also stro
modulated by the precision~synchrony! of inhibitory inputs
@67#. It is at present unclear how a circuit consisting
multiple excitatory and inhibitory loops would react
ci.
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modulations of reliability and precision in one cortical laye
We plan to address this problem in a future study.
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